Wholehog Control System

User Manual

Version 3.2.0-EN
Wholehog Control System: User Manual

Flying Pig Systems

by Susan Gilg and Brad Schiller

Copyright

© High End Systems, Inc. 2002-2011, All Rights Reserved.

Changes

Information and specifications in this document are subject to change without notice. High End Systems, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in this manual.

Trademarks

High End Systems, the Flying Pig Systems logo, the Wholehog, Wholehog II, and Wholehog 3 logos are registered trademarks of High End Systems, Inc., or High End Systems, Europe Ltd. Flying Pig Systems, Effects Engine and Hog are registered trade marks of Flying Pig Systems.

All other brand names and product names used in this book are trademarks, registered trademarks, or trade names of their respective holders.

FCC Information

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Product Modification Warning

High End Systems products are designed and manufactured to meet the requirements of United States and International safety regulations. Modifications to the product could affect safety and render the product non-compliant to relevant safety standards.

Mise En Garde Contre La Modification Du Produit

Les produits High End Systems sont conçus et fabriqués conformément aux exigences des règlements internationaux de sécurité. Toute modification du produit peut entraîner sa non conformité aux normes de sécurité en vigueur.

Produktmodifikationswarnung

Avvertenza Sulla Modifica Del Prodotto

I prodotti di High End Systems sono stati progettati e fabbricati per soddisfare i requisiti delle normative di sicurezza statunitensi ed internazionali. Qualsiasi modifica al prodotto potrebbe pregiudicare la sicurezza e rendere il prodotto non conforme agli standard di sicurezza pertinenti.

Advertencia De Modificación Del Producto

Los productos de High End Systems están diseñados y fabricados para cumplir los requisitos de las reglamentaciones de seguridad de los Estados Unidos e internacionales. Las modificaciones al producto podrían afectar la seguridad y dejar al producto fuera de conformidad con las normas de seguridad relevantes.
Important Safety Information

Instructions pertaining to continued protection against fire, electric shock, and injury to persons are found in Safety Information (p.435).

Please read all instructions prior to assembling, mounting, and operating this equipment.

Important: Informations De Sécurité

Les instructions se rapportant à la protection permanente contre les incendies, l'électrocution et aux blessures corporelles se trouvent dans Informations Importantes Sur La Sécurité (p.436).

Veuillez lire toutes les instructions avant d'assembler, de monter ou d'utiliser cet équipement.

Wichtige Sicherheitshinweise

Sicherheitsanleitungen zum Schutz gegen Feuer, elektrischen Schlag und Verletzung von Personen finden Sie in Wichtige Hinweise Für Ihre Sicherheit (p.436).

Vor der Montage, dem Zusammenbau und der Inbetriebnahme dieses Geräts alle Anleitungen sorgfältig durchlesen.

Informazioni Importanti Di Sicurezza

Le istruzioni sulla protezione da incendi, folgorazione e infortuni sono contenute nell Sezione 40.5, «Importanti Informazioni Di Sicurezza».

Si prega di leggere tutte le istruzioni prima di assemblare, montare e azionare l'apparecchiatura.

Informacion Importante De Seguridad

En el Información Importante De Seguridad (p.437) se encuentran instrucciones sobre protección continua contra incendios, descarga eléctrica y lesiones personales.

Lea, por favor, todas las instrucciones antes del ensamblaje, montaje y operación de este equipo.

Warranty Information

Limited Warranty: Unless otherwise stated, your product is covered by a one year parts and labour limited warranty. It is the owner's responsibility to furnish receipts or invoices for verification of purchase, date, and dealer or distributor. If purchase date cannot be provided, date of manufacture will be used to determine warranty period.

Returning an Item Under Warranty for Repair: It is necessary to obtain a Return Material Authorization (RMA) number from your dealer or point of purchase BEFORE any units are returned for repair. The manufacturer will make the final determination as to whether or not the unit is covered by warranty.

Any Product unit or parts returned to High End Systems must be packaged in a suitable manner to ensure the protection of such Product unit or parts, and such package shall be clearly and prominently marked to indicate that the package contains returned Product units or parts and with an RMA number. Accompany all returned Product units or parts with a written explanation of the alleged problem or malfunction. Ship returned Product units or parts to: 2105 Gracy Farms Lane, Austin, Texas 7875, USA.

Flying Pig Systems
Note: Freight Damage Claims are invalid for products shipped in non-factory boxes and packing materials.

Freight: All shipping will be paid by the purchaser. Under no circumstances will freight collect shipments be accepted.

REPAIR OR REPLACEMENT AS PROVIDED FOR UNDER THIS WARRANTY IS THE EXCLUSIVE REMEDY OF THE CONSUMER. HIGH END SYSTEMS, INC. MAKES NO WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO ANY PRODUCT, AND HIGH END SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. HIGH END SHALL NOT BE LIABLE FOR ANY INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGE, INCLUDING LOST PROFITS, SUSTAINED OR INCURRED IN CONNECTION WITH ANY PRODUCT OR CAUSED BY PRODUCT DEFECTS OR THE PARTIAL OR TOTAL FAILURE OF ANY PRODUCT REGARDLESS OF THE FORM OF ACTION, WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, AND WHETHER OR NOT SUCH DAMAGE WAS FORESEEN OR UNFORESEEN.

Warranty is void if the product is misused, damaged, modified in any way, or for unauthorized repairs or parts. This warranty gives you specific legal rights, and you may also have other rights specific to your locality.

Third Party Software Acknowledgements

Libtar: This product includes software developed by the University of Illinois Board of Trustees and Mark D. Roth.

Copyright © 1998-2003 University of Illinois Board of Trustees.

Copyright © 1998-2003 Mark D. Roth.

All rights reserved.

Botan: This product includes software developed by the Botan Project and its contributors.

Copyright © 1999-2005 The Botan Project. All rights reserved.

XFree86: This product includes software developed by The XFree86 Project, Inc (http://www.xfree86.org/) and its contributors.

Copyright © 1994-2004 The XFree86 Project, Inc. All rights reserved.
Declaration of Conformity

According to ISO/IEC Guide 22 and EN45104

Manufacturer's name: High End Systems
Distributor's name: High End Systems
Distributor's address: 2105 Gracy Farms Lane, Austin TX 78758, USA

Declares that the product:

Product Name: Wholehog 3
Product Number: All
Product Options: All

Conforms to the following EEC directives:

73/23/EEC, as amended by 93/68/EEC
89/336/EEC, as amended by 92/31/EEC and 93/68/EEC

Equipment referred to in this declaration of conformity was first manufactured in compliance with the following standards in 2002:

Safety: EN60950:2000
EMC: EN55103-1:1996 (E2)
 EN55103-2:1996 (E2)

I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standards.

Kenneth Stuart Hansen, Compliance Engineer

30 May 2002
Table of Contents

I: Introduction
- 1: Getting Started ... 3
 1.1 The Wholehog Range of Consoles 3
 1.2 Where to Start ... 3
 1.3 Key .. 4

2: Users New to Moving Light Consoles
- 2.1 The User Interface ... 5
- 2.2 Referring to Fixtures ... 5
- 2.3 Palettes ... 6
- 2.4 Tracking ... 6
 2.4.1 Tracking Through Changes 7
 2.4.2 Simultaneous Cues ... 8
 2.4.3 Maintain State .. 8
- 2.5 Multiple Playbacks and Cuelists .. 8
- 2.6 HTP and LTP ... 9
- 2.7 Individual Times for Each Parameter 9
- 2.8 Mark Cues (Move in Black) ... 10

3: Wholehog II Users
- 3.1 Networking .. 11
 3.1.1 Multiple Shows on the Network 11
- 3.2 The Front Panel .. 11
 3.2.1 Faders .. 12
 3.2.2 Trackball ... 12
 3.2.3 Vertical Wheels ... 12
 3.2.4 New Keys .. 12
 3.2.5 Touch Screens ... 12
- 3.3 New Playback Features .. 12
- 3.4 The Effects Engine ... 13
- 3.5 Abstraction .. 13
 3.5.1 Real World Units .. 13
 3.5.2 Parameters ... 13
 3.5.3 Interchangeable Fixtures 14
- 3.6 Colour Matching ... 14
 3.6.1 Colour Models ... 14
 3.6.2 The Colour Matching System 15
- 3.7 New and Streamlined Functions 16

T: Tutorial
- 4: Quick & Dirty - A Show in Ten Steps 19
 4.1 Step 1: Connecting the Mains ... 19
 4.2 Step 2: Connecting the DMX Processor 19
 4.3 Step 3: Starting the Console ... 19
 4.4 Step 4: Starting a New Show .. 19
 4.5 Step 5: Adding the Fixtures .. 20
 4.6 Step 6: Patching the Fixtures .. 20
 4.7 Step 7: Assigning Values to Parameters 21
 4.8 Step 8: Recording the Cue .. 21
 4.9 Step 9: Playing Back the Cue .. 22
 4.10 Step 10: Changing the Cue Time 22
5: Tutorial Overview .. 23
 5.1 Introduction .. 23
 5.2 Using Visualisation Software ... 23
6: Setting Up the Console .. 25
 6.1 Connecting and Turning On the System 25
 6.2 Calibrating Screens and Setting Up Peripherals 26
 6.2.1 Touchscreens .. 26
 6.2.2 External Displays .. 27
 6.2.3 External Keyboard ... 28
 6.3 Launching A New Show .. 28
 6.4 Find Out More ... 30
 6.5 If You Get Stuck ... 31
7: Setting Up the Show .. 33
 7.1 Adding the Fixtures .. 33
 7.2 Patching the Fixtures .. 35
 7.3 Assigning User Numbers .. 35
 7.4 Automatically creating Palettes and Groups 37
 7.5 Find Out More ... 38
8: Programming Fixtures ... 39
 8.1 Selecting Fixtures ... 39
 8.1.1 Selecting Individual Fixtures 39
 8.1.2 Selecting Multiple Fixtures 40
 8.1.3 Deselecting and Removing Fixtures from Programmer .. 40
 8.2 Creating and Using Groups ... 41
 8.3 Assigning Values to Parameters 42
 8.3.1 Assigning Intensity .. 42
 8.3.2 Assigning Position ... 43
 8.3.3 Assigning Colour and Beam 43
 8.3.4 Fanning Parameters .. 45
 8.4 Creating and Using Palettes .. 45
 8.5 Find Out More ... 46
9: Recording Cues and Times ... 49
 9.1 Building the Look ... 49
 9.2 Recording a Cue ... 49
 9.3 Assigning Timings .. 50
 9.4 Find Out More ... 50
10: Playback ... 51
 10.1 Playing Back Cues .. 51
 10.2 Understanding Feedback .. 52
 10.3 Find Out More ... 53
11: Saving and Shutting Down ... 55
 11.1 Saving the Show .. 55
 11.1.1 Saving to CD-ROM ... 55
 11.1.2 Saving to Zip Disk or USB Drive 56
 11.2 Backing Up ... 56
 11.3 Shutting Down ... 57
 11.4 Find Out More ... 57
R: Reference .. 59
12: Setting Up the System ... 61
12.1 Setting Up the Console ... 61
 12.1.1 Power .. 62
 12.1.2 Touch Screens .. 62
 12.1.3 External Displays .. 63
 12.1.4 Desklights .. 64
 12.1.5 Trackball and Wheels .. 64
 12.1.6 Keys and Buttons ... 67
 12.1.7 Keyboards ... 67
 12.1.8 Date and Time ... 68
 12.1.9 Printers ... 68

12.2 Building a Hog-Net Network .. 71
 12.2.1 Configuring Console Network Adapters 71
 12.2.2 Port Number ... 75
 12.2.3 Node Types and Net Numbers 76
 12.2.4 Connecting Multiple Consoles 76
 12.2.5 Configuring the Network for Client/Server 77
 12.2.6 Configuring the Network for Console Fail-
 over ... 78
 12.2.7 Configuring the Network for Console Track-
 ing ... 79
 12.2.8 More than One Show on the Network 79
 12.2.9 Connecting to an Existing Network 80
 12.2.10 Network File Sharing 81

12.3 Working with Network Processors 82
 12.3.1 Using the network processor’s Front Panel Con-
 trols ... 83
 12.3.2 Network Settings .. 83
 12.3.3 Options and Defaults ... 85
 12.3.4 Resetting the DMX Processor 86
 12.3.5 Checking a DMX Processor’s Status 86
 12.3.6 Expanding the XLR Outputs of a DMX Processor
 8000 .. 86

12.4 Working with Art-Net and E1.3.1(sACN) 88
 12.4.1 Configuring the Fixture Link 89
 12.4.2 Configuring the Art-Net Output 90
 12.4.3 Configuring the E1.3.1(sACN) Output 90
 12.4.4 Using a DMX Processor 2000 in Art-Net
 Mode .. 92

12.5 Adding Playback Wings .. 93
 12.5.1 Removing Playback Wings 94

12.6 Expansion Wings .. 95
 12.6.1 Configuring Expansion Wings 95
 12.6.2 Using the Expansion Wing 96

13: Using the Console ... 97
 13.1 Basic Concepts .. 97
 13.1.1 The Graphical User Interface 97
 13.1.2 Using the Touch Screens 97
 13.1.3 Modifier Keys ... 98
 13.1.4 Undo and Redo .. 98

 13.2 Working with Windows .. 99
13.2.1 Opening Windows ... 99
13.2.2 Closing Windows ... 100
13.2.3 Fronting, Resizing and Moving Windows 100
13.2.4 Scrolling Window Contents 101
13.2.5 Desktop Views .. 102

13.3 Working with Spreadsheets .. 104
13.3.1 Compact Mode .. 105
13.3.2 Aggregation .. 106
13.3.3 Cut, Copy and Paste .. 108

13.4 Working with Directories ... 108
13.4.1 Automatic Naming of Directory Items 110
13.4.2 Colour Coding Directory Items 111

13.5 Working with Editors .. 113
13.5.1 Editor Window Controls 113
13.5.2 Changing Parameter Values in the Editor 114

13.6 Using the Command Line ... 115
13.6.1 Command Line Syntax 116
13.6.2 The Status Bar .. 117

13.7 Starting Up and Shutting Down 118
13.7.1 Starting Up ... 118
13.7.2 Automatically Launching a Show 119
13.7.3 Startup Macros .. 120
13.7.4 Restarting and Shutting Down 121

13.8 Managing Show Data ... 121
13.8.1 Starting a New Show and Changing the Current Show .. 122
13.8.2 Working With Show Files 122
13.8.3 Backing Up ... 124
13.8.4 Copying Files to a CD-ROM 124
13.8.5 Saving and Loading Your Preferences 125

13.9 Merging Shows ... 126
13.9.1 Merging Fixture Types 127
13.9.2 Merging Fixtures ... 128
13.9.3 Merging Programming 129
13.9.4 Dependencies ... 131
13.9.5 Using Merging ... 131

14: Adding and Configuring Fixtures 133
14.1 Adding and Removing Fixtures 133
14.1.1 Adding a Fixture to the Show 133
14.1.2 Replicating Fixtures 135
14.1.3 Changing the Fixture Type 135
14.1.4 Removing a Fixture from the Show 137
14.1.5 Creating Palettes and Groups Automatically ... 137

14.2 Patching Fixtures .. 139
14.2.1 Adding and Removing DMX Processors 139
14.2.2 Selecting the DMX Processor, Universe and Patch Point .. 140
14.2.3 Fixtures with Multiple Patch Points 143
14.2.4 Cloning Patching of Universes 145
17.1 Recording a Palette .. 188
17.1.1 Naming a Palette ... 188
17.2 Using Palettes in Programming 189
17.3 Editing Palette Contents ... 189
17.3.1 Updating Palettes with Different Parameter Types 190
17.4 Deleting Palettes .. 191
17.5 Copying and Moving Palettes 191
17.6 Record Options .. 192
17.6.1 Palette Contents: Global, Per Fixture Type, and Per Fixture 192
17.6.2 Recording with Specified Masking 194
17.6.3 Palette Timing ... 196
17.6.4 Reference Palettes .. 196
17.6.5 Direct Palettes ... 197
17.7 Insert, Merge and Replace .. 198

18: Advanced Programming ... 199
18.1 Selecting from What is Onstage 199
18.2 Bringing Parameter Values Into the Programmer 199
18.2.1 Suck .. 200
18.2.2 Using Live and Touch 201
18.2.3 Using Copy to Bring Values into an Editor 202
18.3 Highlight and Lowlight ... 203
18.3.1 Customising Highlight 203
18.3.2 Lowlight .. 204
18.4 Auto Update ... 204
18.5 Editing Discreetly ... 206
18.5.1 Fade Changes ... 206
18.5.2 Blind ... 206
18.6 Parking .. 207
18.6.1 Viewing and Editing What is Parked 207

19: Working with Cues ... 211
19.1 Recording a Cue ... 211
19.1.1 Recording to a Cuelist on a Master 211
19.1.2 The Contents of the Programmer after Recording a Cue 212
19.1.3 Insert, Merge and Replace 212
19.1.4 Numbering Cues .. 212
19.1.5 Naming Cues .. 212
19.2 Record Options .. 213
19.2.1 Recording Selected Fixtures Only 213
19.2.2 Removing Fixtures and Parameter Values from Cues 213
19.3 Deleting Cues .. 214
19.4 Copying and Moving Cues .. 214
19.4.1 Copying Cues .. 214
19.4.2 Moving Cues ... 215
19.5 Renumbering Cues within a Cuelist 215
19.6 Editing Cue Contents .. 216
19.6.1 Viewing Different Cues in the Editor 217
19.7 Working with Tracking .. 217
 19.7.1 Tracking Values Backwards When Recording 218
 19.7.2 Stopping Values from Tracking Forward 219
 19.7.3 Stopping Changes from Tracking Forward when Deleting a Cue 220
 19.7.4 Blocking Cues .. 221
 19.7.5 Unblocking .. 221

19.8 Mark Cues (Move in Black) ... 223
 19.8.1 How to Mark to a Cue 223
 19.8.2 Fade Mark verses Time Marks 224
 19.8.3 Marking the First Cue in a Cue List 225
 19.8.4 Cuelist Feedback for Mark Cues 225

20: Working with Cue Timing and Ordering 227
 20.1 Working with Fade Timings ... 228
 20.1.1 Fade Time ... 228
 20.1.2 Delay Time .. 229
 20.1.3 Paths .. 230
 20.1.4 Assigning Cue Timings in the Cuelist Window 230
 20.2 Individual Parameter Timings 232
 20.2.1 Assigning Parameter Timings with the Parameter Wheels .. 233
 20.2.2 Assigning Parameter Timings with the Command Line .. 234
 20.2.3 Assigning Parameter Timings in an Editor Window 235
 20.2.4 Fanned Timings ... 237
 20.3 Working with Cue Triggers .. 238
 20.3.1 Learn Timing ... 239
 20.3.2 Clock Triggers .. 240
 20.4 Working with Loops and Links 242
 20.4.1 Creating a Link .. 242
 20.4.2 Creating a Loop ... 242
 20.4.3 Tracking Through Loops 243

21: Working with Cuelists .. 245
 21.1 Creating Cuelists .. 246
 21.2 Naming Cuelists ... 246
 21.3 Deleting Cuelists .. 246
 21.4 Copying and Moving Cuelists 247
 21.4.1 Copying Cuelists ... 247
 21.4.2 Moving Cuelists ... 247
 21.4.3 Insert, Merge and Replace 248

22: Working with Scenes .. 249
 22.1 Recording a Scene .. 249
 22.1.1 Recording to the Scene Directory 249
 22.1.2 Recording to a Physical Master 250
 22.1.3 Naming a Scene ... 250
 22.2 Deleting Scenes ... 250
 22.3 Copying and Moving Scenes 251
22.4 Editing Scene Contents .. 251
22.5 Scene Timing ... 251
22.6 Insert, Merge and Replace .. 252

23: Working with Effects .. 253
23.1 Types of Effect ... 253
23.1.1 Effect Tables .. 253
23.1.2 Effect Attributes .. 254
23.2 Applying Predefined Effect Palettes 256
23.2.1 Adjusting Predefined Effects 257
23.3 Applying and Editing an Effect 257
23.3.1 Applying Effects with the Effects Engine 257
23.3.2 Applying and Editing Effects in the Programmer or Editor .. 259
23.3.3 Tracking Effects ... 260
23.4 Cue Timing and Effects ... 260
23.5 Recording an Effect Palette 262
23.5.1 Naming an Effect Palette 262
23.6 Using Effect Palettes in Programming 263
23.7 Editing Effect Palettes .. 263
23.8 Deleting Effect Palettes ... 264
23.9 Copying and Moving Effect Palettes 264

24: Cuelist Playback .. 265
24.1 Playing Back from a Physical Master 265
24.1.1 Attaching Cuelists to Masters 265
24.1.2 Controlling Cuelist Playback 266
24.1.3 Releasing a Cuelist on a Master 268
24.1.4 Cuelist Options ... 271
24.2 Running Multiple Cuelists 274
24.2.1 Using HTP and LTP ... 275
24.2.2 Asserting One Cuelist Over the Others 276
24.2.3 Changing a Cuelist's Priority 276
24.2.4 Multiple Cuelists with Effects 278
24.3 Playback with a Virtual Master 278
24.3.1 Running Virtual Masters from the Cuelist Directory Window ... 278
24.3.2 Running Virtual Masters from the Cuelist Window ... 279
24.3.3 Running Virtual Masters from the Command Line ... 280
24.4 Understanding Feedback for Cuelists 280
24.4.1 Control and Playback Toolbar Feedback 280
24.4.2 Cuelist Feedback ... 282
24.4.3 The Output Window ... 283
24.4.4 The Levels View Window 284
24.5 Advanced Cuelist Playback 285
24.5.1 Overriding Cuelist Rate During Playback 285
24.5.2 Overriding Cuelist Effect Rate During Playback ... 286
24.5.3 Manual Crossfading ... 286
24.5.4 IPCB Fader Mode ... 287
24.5.5 Using a Cuelist as a Chase 287
24.5.6 Cuelists and Tracking 289
24.5.7 Triggering Automatic Tasks When a Cue Runs 289

25: Scene Playback .. 291
25.1 Playback Attached to a Physical Master 291
 25.1.1 Attaching a Scene to a Master 291
 25.1.2 Playing Back the Scene 292
 25.1.3 Releasing a Scene on a Master 292
 25.1.4 Scene Options Toolbar 294
25.2 Running Multiple Scenes .. 294
 25.2.1 Using HTP and LTP ... 295
 25.2.2 Asserting One Scene Over the Others 295
 25.2.3 Changing a Scene's Priority 296
 25.2.4 Multiple Scenes with Effects 297
25.3 Playback with a Virtual Master 298
 25.3.1 Running Virtual Masters from the Scene Directory Window .. 298
 25.3.2 Running Virtual Masters from the Scene Window .. 299
 25.3.3 Running Scene Virtual Masters from the Command Line .. 299
25.4 Understanding Feedback for Scenes 300
25.5 Advanced Scene Playback .. 300
 25.5.1 Overriding Rate During Playback 300
 25.5.2 IPCB Fader Mode ... 301

26: Working with Pages ... 303
26.1 Creating a New Page .. 303
26.2 Changing Page ... 304
 26.2.1 Options When Changing Page 304
 26.2.2 Matching Levels When Changing Page 305
 26.2.3 Restoring Activity When Changing Pages 306
26.3 Modifying Pages ... 307
 26.3.1 Copying Cuelists, Scenes and Inhibitive Masters to a Page .. 307
 26.3.2 Moving Cuelists, Scenes and Inhibitive Masters to a Page .. 308
 26.3.3 Removing Cuelists, Scenes and Inhibitive Masters from a Page ... 308
 26.3.4 Clearing Cuelists, Scenes and Inhibitive Masters from a Page ... 308
26.4 Copying and Moving Pages ... 308
26.5 Deleting Pages ... 309
26.6 The Template Page ... 309

27: Working with Playback Controls 311
27.1 Grand Master ... 311
 27.1.1 Matching the Grand Master Level 311
 27.1.2 The Blackout Key ... 311
27.2 Inhibitive Masters .. 312
27.3 Configuring Playback Controls 313
27.3.1 Configuring Master Controls .. 315
27.3.2 Configuring the Main Controls 316

28: Working with Audio, MIDI and Timecode 319
28.1 Working with Sound .. 319
28.1.1 Playing Sound from the CD-ROM Drive 320
28.2 Working With MIDI Show Control 321
28.2.1 Bringing MSC into a Wholehog Console 321
28.2.2 Sending MSC from a Wholehog Console 322
28.2.3 Using MIDI Show Control 323
28.3 Working with MIDI Notes .. 324
28.3.1 Bringing MIDI Notes into a Wholehog Console 324
28.3.2 Assigning MIDI Notes to Playback Bars 324
28.3.3 Assigning MIDI Notes to Programming Keys 326
28.3.4 Assigning MIDI Notes to Monitor Soft Keys 327
28.3.5 Assigning MIDI Notes to Comment Macros 327
28.4 Bringing Timecode into the Console 329
28.4.1 Connecting a Timecode Input 329
28.4.2 Timecode Input Options 330
28.5 Triggering Cues from Timecode 331
28.5.1 Editing Timecode Values 332
28.6 Viewing Timecode .. 332
28.7 Simulating Timecode .. 333

29: Automating the Console Using Macros 335
29.1 Comment Macro Commands 335
29.1.1 Entering Comment Macro Commands 338
29.1.2 Additional Comment Macro Syntax 338
29.2 Keystroke Macros .. 339
29.2.1 Recording Keystroke Macros 339
29.2.2 Stopping the Recording of Keystroke Macros 339
29.2.3 Naming a Keystroke Macro 339
29.2.4 Understanding Keystroke Macro Playback 340
29.2.5 Stopping Keystroke Macro Playback 342
29.2.6 Editing Keystroke Macros 342
29.2.7 Deleting Keystroke Macros 344
29.2.8 Copying and Moving Keystroke Macros 345

30: The Hog 3PC Software .. 347
30.1 Installation .. 347
30.1.1 System Requirements 347
30.1.2 Installing the Hog 3PC Application 347
30.1.3 Computer Configuration 351
30.1.4 Software Removal .. 351
30.1.5 Unpacking Hardware Components 351
30.1.6 Hardware Installation 352
30.1.7 Troubleshooting Hardware Installation 353
30.2 Operation .. 354
30.2.1 Starting the Hog 3PC Application 354
30.2.2 Quitting the Hog 3PC Application 355
30.2.3 Working with Hog 3PC Show Files 356
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.2.4 Using the Hog 3PC Interface</td>
<td>357</td>
</tr>
<tr>
<td>30.3 Configuration</td>
<td>359</td>
</tr>
<tr>
<td>30.3.1 USB DMX Widgets and Super Widgets</td>
<td>359</td>
</tr>
<tr>
<td>30.3.2 USB Playback and Expansion Wings</td>
<td>361</td>
</tr>
<tr>
<td>30.3.3 USB Programmer Wing</td>
<td>361</td>
</tr>
<tr>
<td>30.3.4 Virtual Faders</td>
<td>361</td>
</tr>
<tr>
<td>30.3.5 MIDI Configuration</td>
<td>362</td>
</tr>
<tr>
<td>30.4 Visualiser Support</td>
<td>362</td>
</tr>
<tr>
<td>30.5 Upgrading USB DMX Widgets</td>
<td>363</td>
</tr>
<tr>
<td>31: The Road Hog and Road Hog Full Boar Consoles</td>
<td>367</td>
</tr>
<tr>
<td>31.1 Differences Between Road Hog and Other Wholehog Consoles</td>
<td>367</td>
</tr>
<tr>
<td>31.1.1 Patching</td>
<td>367</td>
</tr>
<tr>
<td>31.1.2 Trackball Preferences</td>
<td>367</td>
</tr>
<tr>
<td>31.1.3 Lights</td>
<td>367</td>
</tr>
<tr>
<td>31.2 Starting the Console</td>
<td>368</td>
</tr>
<tr>
<td>31.3 MIDI and Linear Timecode</td>
<td>368</td>
</tr>
<tr>
<td>31.4 Restoring the Road Hog System Files</td>
<td>369</td>
</tr>
<tr>
<td>31.4.1 System Restore from the Internal Drive</td>
<td>369</td>
</tr>
<tr>
<td>31.4.2 System Restore from a USB Drive</td>
<td>369</td>
</tr>
<tr>
<td>31.4.3 Creating a Bootable USB Flash Drive</td>
<td>370</td>
</tr>
<tr>
<td>A: Appendices</td>
<td>373</td>
</tr>
<tr>
<td>32: Visualiser Connectivity</td>
<td>375</td>
</tr>
<tr>
<td>32.1 Installing the Connectivity Application</td>
<td>375</td>
</tr>
<tr>
<td>32.2 Connecting to ESP Vision, MSD, Capture and Light Converse</td>
<td>375</td>
</tr>
<tr>
<td>32.2.1 Configuring Visualisers</td>
<td>379</td>
</tr>
<tr>
<td>32.2.2 Configuring the Network Connection</td>
<td>379</td>
</tr>
<tr>
<td>32.2.3 Configuring the Visualiser Universes</td>
<td>381</td>
</tr>
<tr>
<td>32.2.4 Using the Connectivity with ESP Vision, MSD, Capture or Light Converse</td>
<td>381</td>
</tr>
<tr>
<td>32.3 Connecting to WYSIWYG</td>
<td>381</td>
</tr>
<tr>
<td>32.3.1 Configuring the Network Connection</td>
<td>381</td>
</tr>
<tr>
<td>32.3.2 Configuring WYSIWYG</td>
<td>383</td>
</tr>
<tr>
<td>32.3.3 Additional Steps for WYSIWYG Console Edition</td>
<td>385</td>
</tr>
<tr>
<td>32.3.4 Using the Connectivity with WYSIWYG</td>
<td>386</td>
</tr>
<tr>
<td>32.4 Troubleshooting</td>
<td>386</td>
</tr>
<tr>
<td>32.5 Visualiser Support Contacts</td>
<td>387</td>
</tr>
<tr>
<td>33: The Fixture Builder</td>
<td>389</td>
</tr>
<tr>
<td>33.1 Working With the Fixture Builder</td>
<td>389</td>
</tr>
<tr>
<td>33.1.1 Adding User Created Libraries to a Show</td>
<td>389</td>
</tr>
<tr>
<td>33.1.2 Creating, Editing and Deleting Fixture Libraries</td>
<td>390</td>
</tr>
<tr>
<td>33.1.3 Building the Fixture</td>
<td>392</td>
</tr>
<tr>
<td>33.2 Fixture Builder Tutorial</td>
<td>395</td>
</tr>
<tr>
<td>33.2.1 Step 1: Create the New Fixture</td>
<td>396</td>
</tr>
<tr>
<td>33.2.2 Step 2: Enter Fixture Details</td>
<td>396</td>
</tr>
<tr>
<td>33.2.3 Step 3: Configure Channel Functions and Features</td>
<td>398</td>
</tr>
</tbody>
</table>
List of Figures

3.1 The HSI Colour Wheel ... 15
6.1 The Startup Screen .. 25
6.2 DMX Processor Screens ... 26
6.3 The Start Window .. 26
6.4 The Calibration Screen ... 27
6.5 The Displays Pane of the Control Panel ... 28
6.6 The Keyboard Pane of the Control Panel ... 28
7.1 The Fixture Patch Window ... 36
7.2 The Fixture Window, showing patching ... 36
7.3 The Auto Palettes Window ... 38
8.1 The Programmer Window ... 39
8.2 The Command Line ... 40
8.3 The Fixture Types Toolbar ... 40
8.4 The Group Directory ... 42
8.5 The Slot Toolbar for a Studio Color 575 ... 43
8.6 The Slot Toolbar for a Studio Spot 575 ... 43
8.7 The Fixture Control Toolbar for a Studio Spot 575 44
10.1 Playback Controls ... 51
11.1 The CD Burning pane of the Show Manager window 55
11.2 The Current Show pane of the Show Manager window 56
11.3 The Shut Down Dialog ... 57
12.1 Pane lists for the Control Panel and User Preferences windows 61
12.2 The Calibration Screen .. 62
12.3 The Track Ball pane of the User Preferences window 65
12.4 The On-screen Keyboard .. 68
12.5 The Printers Pane of the Control Panel ... 69
12.6 The Network pane of the Control Panel 72
12.7 The Network window ... 83
12.8 The Widget Outputs pane of the DMX Processor Settings window ... 88
12.9 Art-Net Outputs pane of the DMX Processor Settings window 91
12.10 E1.3.1 pane of the DMX Processor Settings window 91
12.11 Docking Playback Bars with wings and external displays 93
12.12 The Wings pane of the Control Panel .. 94
12.13 The Virtual Faders pane of the User Preferences window 95
13.1 The Window Control Toolbar .. 100
13.2 The View Toolbar ... 102
13.3 The Views Directory ... 102
13.4 The Views Directory in Spreadsheet View 104
13.5 A spreadsheet with and without Compact Mode 106
13.6 A Spreadsheet with Aggregation Turned On 107
13.7 An Aggregated Spreadsheet With Collapsed Rows 107
13.8 The Jump Toolbar .. 108
13.9 A Typical Directory ... 109
13.10 A Typical Directory in Spreadsheet View 110
13.11 The Default Naming pane of the User Preferences window 111
13.12 Directory Item Colour .. 112
Part I. Introduction
Section 1: Getting Started

Wholehog consoles have been designed to be as easy to use as possible. However, they are also designed to control big, complex lighting rigs (as well as small, simple ones) and so at times operating your console is going to get complex too.

This manual has been written to help you become a proficient Wholehog programmer, wherever you are starting from and whatever kind of lighting you do.

Tip
You can open your console's built in User Manual at any time by pressing the Help button on the Window Control Toolbar, at the top of the right-hand screen.

1.1 The Wholehog Range of Consoles

There are five consoles in the Wholehog range: the Wholehog 3, the Hog iPC, the Road Hog, the Road Hog Full Boar and the PC software Hog 3PC; all five run the Wholehog Operating Software, abbreviated to Wholehog OS. This manual describes the Wholehog OS, and generally assumes that you are running it on a Wholehog 3 console. If you are using another console, almost all of the manual will still apply to you, and you can find information specific to your console here:

The Hog 3PC Software (p.347)

The Road Hog and Road Hog Full Boar Consoles (p.367)

1.2 Where to Start

If you want to get going straight away, go to Quick & Dirty - A Show in Ten Steps (p.19). Otherwise, read one of the two sections designed to help you make the transition to Wholehog OS, according to your previous experience with consoles:

Users New to Moving Light Consoles (p.5)
Wholehog II Users (p.11)

If you haven't used a Wholehog console before but are experienced with other moving light consoles, you may still find the section Users New to Moving Light Consoles (p.5) useful.

After that, you can either follow the Tutorial (p.17) or simply start using the console and use the Reference (p.59) as needed.
1.3 **Key**

The following conventions are used in the text of the manual:

Position (p.162)

A cross reference to another part of the manual. In electronic versions of the manual (HTML and PDF) these references are clickable hyperlinks.

fixture

A reference to a term in the *Glossary*. In electronic versions of the manual (HTML and PDF) these references are clickable hyperlinks.

Enter

A name of an interface element such as a button, key or window.

[Studio Color]

A button that has a label that is specific to the show, created by the console or the user. The brackets indicate a label that will vary depending on your particular show.

10 + 12

Text or other information that you should enter using the numeric keypad or the on-screen or external keyboard.

[password]

A description of information that you should enter that is not the literal text.

Record, Enter

Buttons or keys separated by commas show that the keystrokes are sequential. In this case, press the Record key, then the Enter key.

Open + Fixture

Buttons or keys followed by + are held down while the second key is pressed. In this example, hold down the Open key and press the Fixture key.

Setup → Patch → Fixture Schedule

A series of operations that navigate through windows and toolbars.

In the manual the word ‘key’ is used to indicate a hardware button on the front panel of a Wholehog console. For example: ‘press the Enter key’. The word ‘button’ refers to ‘virtual’ buttons that can be pressed on the touch screens or clicked on with the trackball or mouse.

You will also find important or useful information highlighted:

<table>
<thead>
<tr>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A caution, which has information about hazards to equipment or personnel.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>An important note, usually alerting you to situations that require special attention.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>A tip, to help you be more productive in your programming.</td>
</tr>
</tbody>
</table>
Section 2: Users New to Moving Light Consoles

If your previous experience with lighting consoles has been mainly with ‘theatre’ desks (Strand, ETC, etc.) then this section will introduce you to some fundamental differences that you will find with the Wholehog Operating Software.

When you have finished this section, you may also find the sections on Abstraction (p.13) and Colour Matching (p.14) useful.

2.1 The User Interface

Most ‘theatre’ desks use a command line to control them. This means that you enter instructions using a keypad, in the form channel 36 at 50. Information shown on displays is limited to pure text, and only one screen layout can be displayed on one monitor at a time.

Wholehog OS is rather different. It has been designed on the principle that you should be able to see any information about your programmed show at any time, and that you should be able to change that information directly if you wish to. In addition to a conventional command line, Wholehog OS uses a graphical user interface similar to those found on personal computers. Combined with the touch screens, this interface gives a very powerful alternative way of working. You can arrange multiple windows as you want them on the screens, in order to display whatever information you need. You do not have to write down (or remember) as much, because the window that shows you, say, groups that you have programmed also allows you to select those groups simply by touching them. Any object, such as a cue, a group or a fixture, can be named as you wish for easy identification.

The advantages of a graphical user interface are far-reaching, and will become fully apparent as you get more familiar with Wholehog OS. For more information, see The Graphical User Interface (p.97) and Working with Windows (p.99).

2.2 Referring to Fixtures

Lighting consoles that have been primarily designed to work with ‘conventional’ fixtures that have only one parameter (intensity) generally refer to fixtures by number. These ‘channel’ numbers usually run consecutively in a single sequence, say from 1 to 200, and each one related to a single DMX address, and so to a single dimmer. With fixtures such as moving lights that have more than one parameter (intensity, position, colour, etc.), each channel refers to a single parameter of the fixture, rather than the whole fixture. If you have a mixed rig of conventional and moving lights, this system can become very confusing.

Wholehog OS treats a fixture as a single entity, no matter how many or few parameters it has. By default, each type of fixture has its own numbering range, so that you would refer to ‘Studio
Spot 6’ and ‘Cyberlight 12’. Fixtures can be numbered in any way that you prefer, however. For more information, see *Modifying the User Number* (p.149).

Wholehog OS treats conventional lights, consisting of a luminaire controlled by a dimmer, as a special kind of fixture known as a ‘desk channel’. A desk channel has only one parameter: intensity.

2.3 Palettes

The complexity of modern lighting rigs, especially with the widespread use of moving lights, means that programming can be very time consuming. Palettes help to simplify the process by allowing pre-defined lighting ‘elements’ to be created and then used as required. Once you have created a palette, such as a particular set of position settings with moving lights, you can recall those settings instantly, and record them into cues.

A great advantage of palettes over the equivalent ‘group’ features found on many consoles is that when you record a cue using the palette, the cue contains a reference to the palette, rather than the parameter values that the palette contains. If, later, you change the palette then all cues that have been recorded using the palette are also changed. This is especially useful if, for example, the position of a piece of set on stage is moved, and moving lights have been programmed to light it. The palette can be updated once to accommodate the change, rather than in every cue. For more information, see *Working with Palettes* (p.187).

2.4 Tracking

Tracking is quite a difficult concept at first, but it is a very important one. When a sequence of cues is programmed, the lighting console can store the information in one of two ways: either it records the settings for all the parameters of all the fixtures in the show, or it only records the values that have changed since the previous cue. The second method is called tracking. The following example shows the intensities of four fixtures in three cues:

<table>
<thead>
<tr>
<th>Fixture:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Cue 2</td>
<td>50</td>
<td>0</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Cue 3</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

With a non-tracking console, the cues would be recorded with the channel levels as shown above. With a tracking console, however, the recorded information would be:
If the intensity has not changed from the previous cue, then no value is recorded for that parameter. During playback, parameters remain at their last assigned level; for example, fixture 1 remains at 50% intensity when cue 3 is played, because no change was recorded.

So, during playback there are two types of fixture parameter value output:

- **Hard Values**: values programmed into the current cue. Hard values are sometimes known as touched values.
- **Tracked Values**: those values assigned in previous cues but that have not yet been changed again or removed from the output. These values are said to have ‘tracked through’ from a previous cue in which they were Hard Values.

2.4.1 Tracking Through Changes

One advantage of tracking is that changes can be ‘tracked through’ a series of cues. In the example given above, if you changed the intensity of fixture 2 in cue 1 to 60%, this value would track through into cue 2, since cue 2 has no information for fixture 2 recorded. The value will still change to 100% in cue 3, since there is a hard value recorded there.

Tracking can be very useful when you want to make the same change to a series of cues: for example, you might have a series of cues that include a fixture that lights a part of the set in the same way throughout. If you later want to change the intensity of that light, you can change it in the first cue that it appears, and the change will track through to all the cues until the next hard value. This saves you from having to reprogramme the change in every cue in the series.

While tracking can help speed up the modification of cues, you may not always want changes to track through. For example, in a theatre show, you probably wouldn't want changes to track through from one scene to the next, and in a music concert, you wouldn't want changes to track through from one song to the next. To prevent changes tracking through, you can record a blocking cue which contains hard values for all parameters that have values at that point in the cuelist, regardless of whether the values have tracked through from previous cues. In the example given above, a new cue, cue 4, would act as a blocking cue:

<table>
<thead>
<tr>
<th>Fixture:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Cue 2</td>
<td>50</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cue 3</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cue 4</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

The new cue 4 acts as an end-stop, preventing any future changes to cues 1-3 from tracking through to subsequent cues. For more on working with blocking cues, see *Blocking Cues* (p.221).
2.4.2 **Simultaneous Cues**

Another advantage of tracking is that multiple cues can be run simultaneously. Imagine a play where the sun sets outside the window, and characters turn on various lights in the room as the natural light fades. You might create this as an initial sunset cue over 20 minutes, followed by a series of snap cues for the room lights being turned on during the sunset. With a non-tracking console this would cause problems: what would you programme in the cues that turn the room lights on? If you recorded the full state, you wouldn't know what level to assign the sunset fixtures to, as during playback they will have faded down to some indeterminate level during the action of the scene. The cue to turn the room light on is a snap cue, and the result would be a snap change in the sunset as well - not very realistic!

A tracking console allows you to programme just the room lights into a cue, so that the cue won't interfere with the cue for the sunset fixtures, which will proceed with their long fade undisturbed.

Similarly, tracking allows multiple chases to be run at the same time without them conflicting. For example, you could plot a simple colour chase, with fixtures alternating between red and blue, and an intensity chase in which fixtures step through 0%, 50% and 100% before looping back to 0%. With tracking, these two chases can be run on the same fixtures without the chases interfering with each other. This is possible because only the colour parameters of the fixture are recorded in the colour chase, and only the intensity parameters in the intensity chase.

2.4.3 **Maintain State**

Sometimes you will need to play back cues out of sequence. Typically this will happen during rehearsals when you want to go back over a section of the show, but it can happen during performance if the performers make a mistake and miss out a part of the show, for example.

With some tracking consoles, the look on stage that you get after playing back cues out of sequence is incorrect. Using our example above, going from cue 1 to cue 3, missing out cue 2, would result in fixture 1 being at 100% instead of the correct 50%, and fixture 3 being at 50% instead of the correct 100%. This is because the values from cue 1 track through, without the values in cue 2 being applied.

Wholehog OS avoids this problem by Maintaining State. This means that whenever you run a cue, the console ensures that what you get on stage is what you would have got if you had run through the cuelist up to that point, regardless of where you have actually come from within the cue list. Again, using our example above, with Wholehog OS if you jump from cue 1 to cue 3 the console will calculate the state of cue 3 as if you had played cue 2 first.

2.5 **Multiple Playbacks and Cuelists**

Most ‘theatre’ consoles only use a single cuelist. Wholehog OS allows multiple cuelists, each with their own numbering sequence. You can have several cuelists active at the same time, each on its own playback.
On Wholehog consoles, there are ten playbacks (‘masters’), each with a fader, Go, Halt/Back and Flash keys; you can add further hardware wings and use virtual masters to provide an unlimited number of simultaneous playbacks. For more information, see Cuelist Playback (p.265).

Pages allow you to load preset arrangements of cuelists onto the masters; see Working with Pages (p.303).

2.6 HTP and LTP

Generally, theatre desks that are not designed to handle moving lights work on a Highest Takes Precedence (HTP) basis. This means that if a fixture’s intensity is being controlled by two different parts of the console, such as a playback and a submaster, the intensity will be at the highest of the two levels. For example, if in the playback fixture 1 is at 50%, and in the submaster it is at 100%, then the level seen on stage will be 100%. If the submaster is reduced to 40%, then the on-stage level will be 50%, because the level in the playback is higher and will take precedence.

This system generally works well for non-moving light consoles, but moving lights introduce a problem. Parameters other than intensity don’t have ‘higher’ and ‘lower’ values: a colour of red is not higher or lower than green, and a pan of 50% is not higher or lower than one of 20%. Working with moving lights needs a new way to decide the precedence, called Latest Takes Precedence (LTP).

With this system, the fixture parameters are at the value they have been most recently assigned. In our example, moving the submaster to 40% would result in a level of 40%, because this is the latest instruction and will take precedence. The submaster would effectively ‘grab’ control of the parameter from the playback. Of course, running another cue in the playback might grab it back again.

Many moving light consoles use HTP for intensity and LTP for all other parameters. By default, Wholehog OS uses LTP for all parameters, but you can assign individual cuelists to use HTP for intensities (all other parameters are still LTP); see Using HTP and LTP (p.275).

2.7 Individual Times for Each Parameter

With Wholehog OS you can assign individual crossfade timings for each parameter of each fixture, giving you complete control of how each parameter changes during a cue. Because of this, there are no cue parts as found on some other consoles. Wholehog OS gives you easy ways to assign timings for the whole cue, for individual fixtures and by parameter type (intensity, position, colour, beam, and so on) as well as for each parameter. For more information, see Individual Parameter Timings (p.232) and Working with Fade Timings (p.228).
2.8 **Mark Cues (Move in Black)**

With Mark cues you can have the Wholehog OS automatically preset a fixture's parameters while its intensity is at zero, ready for when the fixture fades up in the next cue. This ensures that you don't get ‘live moves’ of parameters such as pan, tilt, colour and so on during the fade. For more information, see *Mark Cues (Move in Black) (p.223)*.
Section 3: Wholehog II Users

If you are an experienced Wholehog II user, you will find the transition to a console running the Wholehog Operating Software very straightforward. This section lists the major changes and additions with brief descriptions, while full information on each topic can be found in the Reference (p.59) part of this handbook.

3.1 Networking

Unlike Wholehog II, the Wholehog 3 console does not produce a DMX output directly. Instead, the console is designed to work as part of a network, linked to other devices that serve a variety of functions including generating DMX for connection to dimmers and fixtures. At its simplest, the network is a Wholehog 3 console connected to a DMX Processor, which produces DMX.

The Hog iPC and Road Hog consoles have four universes of DMX output built-in to the console, and the Road Hog Full Boar, Hog iPC and Hog 3PC can use DMX Processors networked to them.

A Wholehog system can consist of a more complex network with several Wholehog consoles, personal computers running Hog 3PC, and DMX Processors. For more information on networks, see Building a Hog-Net Network (p.71).

3.1.1 Multiple Shows on the Network

Networking allows several shows to be run on the same network. A theme park, for example, might have several rides, stages and other lighting areas, which need to be run as separate shows. Each show could have an operator with a console, while a ‘master’ operator controls all shows, perhaps in order to make changes to the programming. For more information on using multiple shows on one network, see More than One Show on the Network (p.80).

3.2 The Front Panel

The front panel of the Wholehog 3 looks relatively unchanged from the Wholehog II, but it incorporates many improvements. The rear part of the panel with the touch screens can be tilted up to present the screens at a more convenient angle, while in response to user feedback the wrist rest has been made softer and more comfortable.
3.2.1 **Faders**

The number of masters has been increased from eight to ten, while the Grand Master and Cross Fade Master have been removed. Any master can now act as a Grand Master. For more detailed information, see *Working with Playback Controls (p.311)*.

3.2.2 **Trackball**

The Trackball has been added to give easy control over pan and tilt, and to control the on-screen cursor. This is especially useful with the Wholehog 3's enhanced spreadsheet-style features.

3.2.3 **Vertical Wheels**

In addition to the parameter wheels used by the Wholehog II, the Wholehog 3 features two vertically mounted wheels. The one on the right-hand side of the console is the I-Wheel and is used for controlling the intensity of fixtures. The Rate Wheel on the left-hand end is sprung, and is typically used for overriding the crossfade speed of a cue, or the rate of an effect or chase.

3.2.4 **New Keys**

Some functions that on Wholehog II required a combination of key presses have been given their own dedicated buttons, such as Fan, Merge, Fixture, Intensity and Back. See *New and Streamlined Functions (p.16)*.

Additional buttons have also been provided along the top and bottom edges of the touch screens. These Soft Keys replicate the on-screen toolbar buttons located immediately above or below the Soft Keys.

3.2.5 **Touch Screens**

The two touch screens are larger, are in colour, and have better brightness and contrast characteristics. For more information, see *Using the Touch Screens (p.97)*.

3.3 **New Playback Features**

The new playback features include:

- **Ten Fully Customisable Playbacks**: The functions of all associated keys and faders can be customised.
- **Scene Masters**: Scenes, which are single cues that are not associated with a cuelist, can be loaded onto any of the masters and controlled by the fader and keys.
- **Inhibitive Masters**: Groups can be loaded onto masters, and their maximum intensity controlled by the fader.
3.4 **The Effects Engine**

The new features of the Effects Engine include:

- **Palettes:** Effects can be recorded into embeddable palettes, so that they update throughout the show when the original palette is modified.

- **Effects Morphing:** Effects can morph from one to the next. For example, with a circle at one speed in cue 1 and a circle at another speed in cue 2, on the crossfade the circle will speed up, rather than the first circle stopping and the next one fading in.

- **Effect Length:** You can now specify over what proportion of the effect period the effect occurs.

3.5 **Abstraction**

A key philosophy behind Wholehog OS is that as a user you shouldn't have to worry about the technicalities of the way that a particular manufacturer implements a particular feature on a fixture. As far as you are concerned the fixture has common parameters such as intensity, position, colour and beam, and it is these parameters that you control with the console. You no longer have to think in terms of DMX addresses and values.

This is called the ‘abstraction layer’ because the software acts as a layer between you the user and the lighting hardware, converting ‘abstract’ ideas of intensity, colour, and so on into the specific instructions that the fixtures need, defined by their DMX protocol.

3.5.1 **Real World Units**

Fixture parameters are described as far as possible in real world units such as degrees for rotation and beats per minute for the speed of a chase. Colour can be described in terms of a single colour model for all fixtures (cyan-magenta-yellow or hue-and-saturation, for example) irrespective of the technical details of how the fixture creates a particular colour; see Colour Matching (p.14). This speeds up programming and allows fixtures of different types to be selected and adjusted at the same time: for example, you can assign several fixtures of different types to all strobe at 10 Hz without having to worry about the different DMX values required by each fixture to achieve this. Wholehog OS will give you the best possible match between fixtures; the only limitations are those of the fixtures themselves.

3.5.2 **Parameters**

Some fixtures put more than one parameter onto a single DMX address. For example, a fixture might use DMX values in the range 0-127 for intensity, 128-250 for strobe, and 251-255 for fixture reset. With the Wholehog II, the three functions of intensity, strobe and reset would all be controlled as a single parameter, and you would have to remember that if you accidentally
turned the parameter wheel too far when adjusting the strobe speed, you could give the parameter a value above 250 and send the fixture into reset.

Wholehog OS separates such functions into independent parameters, so that you do not need to remember the detailed workings of a particular fixture; in the example given above, the intensity, strobe and reset functions all appear as separate parameters, so there is no possibility of going from strobe into reset. With parameters that share a DMX address, changing the value of one will override the value of all the others, since there can only be one DMX value. In the case of our example, assigning a strobe speed will override any intensity value; the console will show a ~ in place of the intensity value to indicate that this has happened.

3.5.3 Interchangeable Fixtures

You can replace a fixture already programmed into a show by one of a different type, and Wholehog OS will as far as possible convert the programmed data to apply to the new fixture type. If the new fixture has more limited capabilities than the old one, this is handled as gracefully as possible. For more on replacing fixtures, see *Changing the Fixture Type (p.135)*.

3.6 Colour Matching

Fixtures of different types use different methods to perform colour mixing. Sending the same parameter values to fixtures of different types might produce a different colour on each type. For example, sending C=50%, M=50%, Y=0% will always produce a shade of blue, but it'll be a different blue with different fixture types.

Usually, you have to compensate for this yourself by manually creating colour palettes by eye to produce similar colours on all fixture types. This is a time consuming process, and later restricts you to using the palettes you have already set up.

The Wholehog OS's colour matching system provides a new way to choose colours, without these problems.

3.6.1 Colour Models

Traditionally, colour mixing fixtures use the CMY (Cyan, Magenta, Yellow) system to uniquely define each colour they can produce. With the increasing popularity of LED fixtures, the RGB (Red, Green, Blue) system is also becoming more common. These two systems are called ‘colour models’. Any colour can be represented equally well by either of these two colour models - they are just different ways of conveying the same information. Many other colour models exist, perhaps the most useful of which (for lighting control, anyway) is the HSI (Hue, Saturation, Intensity) system:

Hue: This is the term used to specify the colours position in the possible range a colours, from red, going through yellow, green, cyan, blue and magenta, and finally returning to red. As the range ‘wraps around’, you can visualise it as a circle with the colours positioned around the edge, with red at the top, green at the lower right, blue at the lower left, and the intermediate colours in between.
The angle between 0 and 360 degrees specifies the hue of the colour: red has a hue of 0 degrees, yellow has a hue of 60 degrees, and cyan has a hue of 180 degrees; see Figure 3.1, “The HSI Colour Wheel”.

Saturation: This is how ‘strong’ or ‘pale’ the colour is. Pale colours have low saturations, while strong colours have high saturations. Saturation is specified as a percentage between 0% (white) and 100% (the strongest possible saturation).

Intensity: This is simply a measure of how much light is being emitted, from 0% (black) to 100% (the brightest possible). This is identical to the dimmer control on most fixtures.

With these three pieces of information (hue, saturation and intensity), every possible colour can be represented. As most fixtures already feature a dimmer to control the intensity, it is only necessary to specify the Hue and Saturation to uniquely represent any colour.

The Hue and Saturation of White Light

White is defined as the colour with 0% saturation; the hue doesn't matter. However, while tungsten and arc lamps both produce ‘white’ light, when you compare them side to side their colours are considerably different. The tungsten lamp has a ‘warmer’ colour with a higher red and yellow content, while arc lamps usually have a ‘cooler’ light with more blue in it. One version of white is not more ‘correct’ than the other, so either may be chosen to be the reference point depending on the situation. In a theatrical environment where tungsten sources are more common tungsten white is likely to be most appropriate base. In other environments predominantly using arc sources, it will be more convenient to use arc white; for information on changing the white point, see Using Colour Matching (p.167).

3.6.2 **The Colour Matching System**

The Wholehog OS’s colour matching system is based on a fixture library that contains colour calibration data for the fixture types in use. This calibration ensures that fixtures of different types can easily be assigned to the same colour, including to a chosen definition of ‘white’. It can also be used for fixtures that have not been calibrated, but the colours that will be produced may not match the colours from fixtures that do have calibration data.
You can choose colours using the parameter wheels to assign cyan, magenta and yellow values or hue and saturation values, or you can use the on-screen visual colour picker; see *The Colour Picker (p.167)*.

It is preferable to program using Hue and Saturation whenever possible. The advantages are:

- Selecting colours using Hue and Saturation or the colour picker will produce the same visual colour output on all calibrated fixture types.
- You can use fanning and effects on Hue and Saturation to produce attractive looks quickly.
- When you use Hue and Saturation to pick a colour, Wholehog OS will automatically use the best possible DMX value settings for each fixture type to achieve maximum light output from each fixture.
- You can crossfade from a saturated red to a saturated green without the saturation changing. The crossfade will work through all the saturated colours between red and green, rather than taking an unexpected path to get there, as can happen when using CMY programming.
- Crossfades between colours recorded using Hue and Saturation will remain matched on all fixtures through the progress of the crossfade. This produces a better, more even-looking colour crossfade.

Tip

It is strongly recommended that you do not change between the HSI and CMY systems within a show.

3.7 New and Streamlined Functions

Wholehog OS simplifies, clarifies and streamlines some Wholehog II functions. This table shows the main changes:

<table>
<thead>
<tr>
<th>Wholehog II Function</th>
<th>Wholehog OS Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>Use Open to open an object (cue, palette, etc.) and edit it directly.</td>
</tr>
<tr>
<td>Clone</td>
<td>Use Copy to copy settings between fixtures, as well as copying whole objects.</td>
</tr>
<tr>
<td>Extract</td>
<td>Use Copy to copy settings into the Programmer.</td>
</tr>
<tr>
<td>Active</td>
<td>Use Live to make selections based on the look on stage. Use Touch to assign hard values corresponding to what is currently on stage. Use Suck to capture the look that is currently on stage.</td>
</tr>
</tbody>
</table>
Part T. Tutorial

The Tutorial guides you through the main operations of setting up the console, and programming and running a show. If you want a detailed description of how to work with particular functions, use the Reference (p.59).

The Tutorial is in two parts: the Quick & Dirty tutorial shows you how to create a very simple show in Ten steps, while the main tutorial gives you a more detailed introduction to the Wholehog 3.
Section 4: Quick & Dirty - A Show in Ten Steps

OK, you've got your hands on a console or PC running Wholehog OS, and you want to see it working right now. You need the Quick and Dirty tutorial.

4.1 Step 1: Connecting the Mains
Use the IEC cables supplied to connect the console and the DMX Processor to any voltage between 100 and 240V AC.

4.2 Step 2: Connecting the DMX Processor
Connect the DMX Processor directly to your console with a standard Category 5 cable.

4.3 Step 3: Starting the Console
Switch on the power to the console and the DMX Processor. Once the console has started up, the Start window will appear.

4.4 Step 4: Starting a New Show
Select Launch New Show. You will be prompted for:

- A Storage Location. Choose the location that the console suggests.
- A name for your show. Press the Set key to bring up an on-screen keyboard to enter text.
- A Fixture Library. This contains fixture personality information. Choose the one the console suggests and select Finish.

Wholehog OS will launch a new show.
4.5 **Step 5: Adding the Fixtures**

Choose the **fixtures** you want in your show. To add Fixtures:

1. **Setup → Patch → Fixture Schedule**: open the Fixture Schedule window.
2. Choose a manufacturer, and click on the + button to expand the list and see individual fixture types.
3. Select the fixture's Quantity cell and press **Set**.
4. Enter the number of fixtures, and press **Enter**.
5. Repeat for all the fixture types you want.
6. When you have finished, click **OK** to apply changes and close the window.

4.6 **Step 6: Patching the Fixtures**

For each fixture:

- **Fixture, [Fixture Type from Toolbar], [Fixture Number] @ [Patch Address], Enter**

For Example:

- **Fixture, [Studio Color 575], 1 @ 1, Enter**: after pressing Fixture, the Fixture Types Toolbar appears, from which you can choose the required fixture type.

When patching, the Fixture Patch window will appear. Use this to determine the next free **DMX address**, and to see how full the **DMX universes** are.

To Patch to a universe greater than 1:

- **Fixture, [Fixture Type from Toolbar], [Fixture Number] @ [Universe Number]/[Patch Address], Enter**

For Example:

- **Fixture, [Studio Color 575], 1 @ 2/1, Enter**

Repeat as necessary, when all fixtures are patched close the Fixture window.
4.7 **Step 7: Assigning Values to Parameters**

Fixtures and their parameters are assigned values in the Programmer, opened by pressing Programmer in the Main Toolbar.

First, assign the intensity of your fixture. For example:

- Fixture [Studio Color 575] 1 @ 60, Enter : assigns the intensity of Studio Color 1 to 60%.

When you press the Fixture key, the Fixture Types Toolbar will appear. Use this to select Studio Color 575 in this example.

You can also adjust the intensity with the I-Wheel on the right of the console:

- Fixture [Studio Color 575] 1, Enter : select the fixture, then move the I-Wheel.

Now assign the other parameters:

Pan and Tilt: With the fixture still selected, change the Trackball to pan and tilt mode by pressing the top right Trackball button. The Trackball will glow blue, and you can use it to assign the pan and tilt of the fixture. When you have finished, press the top right button again to change the Trackball back to controlling the on-screen pointer.

Colour: Press the Colour key, and you adjust the fixture's hue and saturation with the parameter wheels. Press Colour again to mix using cyan, magenta, and yellow. You can also choose specific colour slots from the Slot Toolbar on the touch screen.

Beam: Press the Beam key. You can now assign beam focus, frost and so on using the parameter wheels. You can select beam slots such as gobos from the Slot Toolbar.

4.8 **Step 8: Recording the Cue**

Once you have assigned values to some fixtures, record a cue to a specific master for playback:

- Press Record, then the Choose key above one of the masters.

The first time you record a cue onto a master, Wholehog OS will create a new Cuelist on that master, and record the cue as Cue 1. If you record more cues into the same cuelist, Wholehog OS will give each the next free cue number.

Tip

By default, the Grand Master is on Master 1, so it is best to use a different master for your cuelist. If you accidentally load a cuelist onto Master 1, you can recover the Grand Master by moving the cuelist to another
4.9 **Step 9: Playing Back the Cue**

1. Check that the Fader of the Grand Master (by default it is on Master 1) and the master that you put your cuelist on are at full.

2. Clear the Programmer to ensure its output does not interfere with your look on stage by pressing Clear.

3. Press Go on the master you recorded your cues on:

 ![Go key](image)

4.10 **Step 10: Changing the Cue Time**

Wholehog OS gives cues a default time of 2 seconds when they are first recorded. To change the cue time:

- **Cue 1 Time 6, Enter**

You can now carry on to the full tutorial in the next section, or just start using the console and use the Reference (p.59) to answer your questions as you go.
Section 5: Tutorial Overview

5.1 Introduction

The following sections introduce you to the basic functions of Wholehog OS by worked example, introducing its layout; showing you how to create new shows; connect fixtures, create groups and palettes; then programme cues, chases and effects. Experienced Wholehog II users may bypass this section, firstly referring to Wholehog II Users (p.11) and then to Reference (p.59) when needed.

The Tutorial rig consists of:

1 x Wholehog OS console.
5 x Studio Spot 575 on the back truss
10 x Studio Color 575M on the front truss
8 x Technobeam Iris on the back truss
16 x Desk Channels, with 8 x Source 4 Parnels on each circular truss screen

5.2 Using Visualisation Software

You can use visualisation software such as ESP Vision, WYSIWYG, MSD, Light Converse, and Capture to work through the examples in the tutorial. The software allows you to directly see the effects of your actions without hanging any fixtures. In fact you don't need to hang any virtual fixtures, since visualiser files with the rig used in all training and examples in this section can be downloaded from the Flying Pig Systems website at www.flyingpig.com. For information on configuring Wholehog OS to work with visualisers, see Visualiser Connectivity (p.375).
Section 6: Setting Up the Console

Wholehog lighting systems can be quite complex, with multiple consoles, DMX Processors and other devices networked together. This tutorial uses a basic system of one Wholehog OS console using a DMX Processor. PC based consoles do not require a DMX Processor for output.

6.1 Connecting and Turning On the System

1. Connect the DMX Processor using a Category 5 cross-over cable, supplied with the console. An ordinary (non-crossover) cable won't work.

2. If you wish, connect an external keyboard, mouse, and displays. Adding a mouse frees up the console's Trackball for positioning fixtures.

3. Connect the DMX Processor and the Wholehog console to mains power, and turn on. You can connect the console to any mains supply between 100 and 240V AC.

After a few moments the Wholehog OS Startup window will appear:

![Wholehog Control System]

Figure 6.1. The Startup Screen

The DMX Processor's LCD screen shows Connecting - No Server. Once a you have loaded a show, the screen will display Idle - Show Server: 127.0.0.1@6600. The LCD screen will remain
like this until you have patched fixtures and DMX is being outputted, when the DMX Processor’s status will change to Running.

Figure 6.2. DMX Processor Screens

6.2 Calibrating Screens and Setting Up Peripherals

When you first use the console, or reload its software it is a good idea to recalibrate the touch screens ensuring that on-screen buttons can precisely selected using fingertips.

Figure 6.3. The Start Window

6.2.1 Touchscreens

1. Once the console is switched on, the Start window will appear (see Figure 6.3, “The Start Window”). Press the Touchscreens button.

2. A target will appear sequentially in each corner, which you should touch in turn; see Figure 6.4, “The Calibration Screen”. When you have calibrated all positions, press Enter to finish.
You can press the Set key to start the process again if necessary.

![Calibration Screen](image)

Press each of the targets in turn to calibrate.
Press Set to start calibration again.
Press Control to swap external screens.
Press Enter to finish.

Figure 6.4. The Calibration Screen

6.2.2 External Displays

If you have connected external displays to supplement the console's touch screens, you will need to enable them and set their screen resolution:

1. **Control Panel → Displays**: open the Control Panel and select the Displays pane.
2. Enable the displays you want to use with the Enabled buttons.
3. Select a resolution for the displays from the drop-down menu; see *Figure 6.5, “The Displays Pane of the Control Panel”.*
4. **OK**: close the Control Panel.
5. For the display settings to take effect, you need to restart the console. Press Quit in the Start window. When the console says that it is safe to turn it off, switch off and back on again using the power switch on the rear of the console.
6.2.3 **External Keyboard**

Finally, if you have connected an external keyboard, you may need to configure it:

1. Control Panel → Keyboard: open the Control Panel and select the Keyboard pane.
2. Choose a keyboard model and layout in the Keyboard pane; see Figure 6.6, “The Keyboard Pane of the Control Panel”.
3. Click or press on OK.

6.3 **Launching A New Show**

The Wholehog OS Start window (see Figure 6.3, “The Start Window”) gives you the option to Launch New Show, as well as launch existing shows or join one currently running over a network.
For now, create and launch a new show, following the on-screen instructions as the console guides you through the process:

1. Select the Launch New Show option. The Show Location screen will allow you to name your new show and select a location for the show:

![New Show Location Screen]

2. Select a library to use for your show. You can use the standard library in the fixture library folder or choose a library from an existing show:
It is best to select the most recent (highest version number) library. The ‘uncommon’ library contains rarely used fixture types and should not be used to start new shows.

3. Select Finish. The console will launch a new show.

6.4 **Find Out More**

For more information, see the *Reference (p.59)* section of the manual:

For: Power, peripherals and hardware set-up
See: Setting Up the Console (p.61)

For: Networking
See: Building a Hog-Net Network (p.71)

For: DMX Processors
See: Working with Network Processors (p.82)

For: Launching the show
See: Starting Up (p.118)
6.5 **If You Get Stuck**

More troubleshooting advice, and information on getting help from Flying Pig Systems, can be found in *Getting Help* (p.421).
Section 7: Setting Up the Show

7.1 Adding the Fixtures

Before starting programming you need to choose the fixtures you wish to use in the show and patch them within the Fixture window:

![Fixture Window]

To open the Fixture window:

- Setup → Patch: press the Setup key on the console to show the Setup Toolbar, then press Patch.

To add new fixtures, open the Fixture Schedule window by pressing the Fixture Schedule button in the top left-hand corner of the Fixture window:
Use the trackball, mouse or cursor keys (below the trackball) to navigate the list of manufactures. With the cursor keys, use up and down to scroll, and right and left to toggle open and closed each manufacture’s list.

1. Scroll to High End, and toggle the list open by clicking on the + icon, or using the right cursor key.
2. Select Studio Color 575, press Set, type 10 and Enter.
3. Repeat for 5 Studio Spot 575s.
4. Repeat for 8 Technobeam Iris.

Tip

If you have an external keyboard attached to the console, you can press H to jump to High End, and so on.

To add the Desk Channels:

1. Scroll to the Generic list and toggle open.
2. Select Desk Channel. Press Set, type 16 and Enter.
3. When you have finished, select OK to apply and close the window.

Tip

Desk channels are conventional intensity-only fixtures such as parcans.
7.2 **Patching the Fixtures**

You now need to assign a **DMX address** to each fixture that you entered into the schedule. The following patch uses the same DMX addresses as the visualiser tutorial show files obtainable from the Flying Pig Systems website. All the fixtures in the tutorial rig can be connected to a single **DMX universe**.

To patch fixtures, make sure that the Fixture window is open (Setup → Patch). First, patch the Studio Color 575s:

1. **Fixture, [Studio Color 575], 1 Thru 10**: select the fixtures to patch. The Fixture key is on the console, and the fixture types are on the Fixture Types Toolbar on the right hand touch screen.
2. **Patch @**: the Fixture Patch window will open. The Patch @ button is at the top of the Fixture window.
3. In the Fixture Patch window, check that DMX Processor 1 is highlighted, and its first Universe is selected; *Figure 7.1, “The Fixture Patch Window”*.
4. **1, Enter**: patches Studio Colors 1 through 10 to DMX addresses 1 to 160 consecutively.

Tip

You can use the @ key on the console as a short-cut for the Patch @ button in the Fixture window.

Patch the remaining fixtures in the same way:

1. **Fixture, [Technobeam Iris] 1 Thru 8 @ 161, Enter**: patches Technobeams 1 through 8 to DMX addresses 161 to 304 consecutively.
2. **Fixture, [Studio Spot 575] 1 Thru 5 @ 305, Enter**: patches Studio Spots 1 through 5 to DMX addresses 305 to 424 consecutively.
3. **Fixture, [Desk Channel] 1 Thru 16 @ 425, Enter**: patches Desk Channels 1 thru 16 to DMX addresses 425 to 441 consecutively.

Once you have patched all the fixtures, press Apply Patch or close the Fixture window to send the patch information to the DMX Processor. *Figure 7.2, “The Fixture Window, showing patching”* shows the completed patch.

7.3 **Assigning User Numbers**

A User Number is a number you use to select a particular fixture when programming. By default, Wholehog OS gives each fixture type its own range of numbers, so there may be several fixtures numbered 1, distinguished by selecting the fixture type before entering a number when selecting
fixtures. You can speed up programming by renumbering the User Numbers into a non-repetitive single series, so that you don't have to keep re-selecting fixture types.

To Change the User Number:

1. **Setup → Patch**: open the Fixture window.
2. Select the fixture's Num cell (short for User Number) by clicking on it with the trackball or mouse.

3. Press Set, type in the new number, and press Enter.

To change several User Numbers at once:

1. Setup → Patch
2. Select a range of Num cells by clicking and dragging.
3. Press Set, type in the new number, and press Enter: the fixtures' User Numbers will be assigned starting from the number you entered.

If you wish to use user numbers for the tutorial they should be assigned as follows:

<table>
<thead>
<tr>
<th>Fixtures</th>
<th>User Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio Colors 1-10</td>
<td>1-10</td>
</tr>
<tr>
<td>Studio Spots 1-5</td>
<td>11-15</td>
</tr>
<tr>
<td>Technobeams 1-8</td>
<td>21-28</td>
</tr>
<tr>
<td>Desk Channels 1-16</td>
<td>31-46</td>
</tr>
</tbody>
</table>

Note that throughout this manual, it is assumed that you have assigned user numbers so that they are unique, so you don't have to specify the fixture type.

7.4 **Automatically creating Palettes and Groups**

Groups are predefined selections of fixtures, while palettes are predefined parameter settings. Together, they speed up programming by allowing you to create states from “building blocks” of light.

Creating your own groups and palettes is described in *Creating and Using Groups* (p.41) and *Creating and Using Palettes* (p.45), but to get you started Wholehog OS can create an initial set of groups and palettes automatically. The Auto Palettes function located at the top of the Fixture window automatically creates commonly needed colour and beam palettes, and common groups such as All, Odd, Even, and so on, based on the fixtures in the show:

1. Setup → Patch, Auto Palettes: the Auto Palettes window opens, giving a range of options; see Figure 7.3, “The Auto Palettes Window”.
2. Select Generate.
3. Close the Fixture window.
The Auto Palettes function has a number of advanced options described in Creating Palettes and Groups Automatically (p.137).

7.5 Find Out More

For more information, see the Reference (p.59) section of the manual:
For: Adding and Patching Fixtures
See: Adding a Fixture to the Show (p.133), Patching Fixtures (p.139)
For: Configuring Fixtures
See: Configuring Fixtures (p.148)
For: User Numbers
See: Modifying the User Number (p.149)
For: Groups
See: Working with Groups (p.181)
For: Palettes
See: Working with Palettes (p.187)
Section 8: Programming Fixtures

Once you have patched the fixtures, you can start building your show. Despite the ease with which you can programme on Wholehog OS, it is advisable to plan your show beforehand, creating building blocks to speed the actual recording of cues. Remember that there are many more parameters to process than just lamp intensity when tackling a moving light rig. Careful creation of palettes and groups will give your plot structure and enable you build up complex layers and looks not otherwise possible.

All fixture manipulation takes place in editor windows, see Working with Editors (p.113). There are editors for cues, palettes, and so on, but you will do your initial programming in the Programmer; see Figure 8.1, “The Programmer Window”.

Open the Programmer window by selecting Programmer from the Main Toolbar.

The console allows you to have several editors open at once, for example to edit a cue that you recorded previously while also working in the Programmer. To ensure that your commands go to the correct editor, select Edit in the top of the editor window you want to work in.

8.1 Selecting Fixtures

The process of selecting fixtures is used in creating all groups, palettes, cues and scenes. There are several ways to select fixtures; the main ones are described here.

8.1.1 Selecting Individual Fixtures

You can select a fixture using a command line:

- Fixture [Studio Color 575] 1, Enter

The Command Line Toolbar is shown in Figure 8.2, “The Command Line”.

![Figure 8.1. The Programmer Window](image-url)
When you press the Fixture key, the Fixture Types Toolbar will appear with all the fixture types in the show for you to select from; Studio Color in the example above. See Figure 8.3, “The Fixture Types Toolbar”.

Alternatively, you can cycle through the fixture types by repeatedly pressing the Fixture key. The Programmer will remember the last fixture type that you selected, which means you only need to press Fixture and choose a type when you wish to use a different fixture type. So:

- **2, Enter**: selects Studio Color 575 2 within the Programmer.

With User Numbers

If you have assigned your user numbers as a non-repetitive single sequence, simply type the fixture's user number irrespective of type:

- **1, Enter**: selects Studio Color 1 within the Programmer.
- **21, Enter**: selects Technobeam 1 within the Programmer.

8.1.2 Selecting Multiple Fixtures

First, clear the previous selection by pressing the Clear key.

You can select more than one fixture using the +, -, and Thru keys:

- **Fixture 1 + 5, Enter**: selects Fixtures 1 and 5.
- **Fixture 1 Thru 5, Enter**: selects Fixtures 1 through 5.
- **Fixture 1 Thru 5 – 3, Enter**: selects Fixtures 1 through 5 except 3.

You can also select more than one fixture type at once. If you haven’t assigned unique user numbers, you will need to specify the fixture type:

- **Fixture [Studio Color 575] 1 Fixture [Studio Spot 575] 2, Enter**.

Or, with unique user numbers:

- **Fixture 1 + 12, Enter**: selects Studio Color 575 1 and Studio Spot 575 2.
8.1.3 **Deselecting and Removing Fixtures from Programmer**

Once you make a new selection, previously selected fixtures will remain in the Programmer and are indicated by changing the text colour to pale blue. To make further changes, re-select them, or click on the fixture's number in the Num column of the Programmer window.

You can clear specific fixtures by knocking them out of the Programmer:

- [Studio Color] 1 Thru 10 Knockout

You can clear all fixtures in the Programmer by pressing the Clear key. Note that knocking out fixtures or clearing the Programmer will clear any parameter values that you have assigned. Pressing the Undo key will restore the cleared values, however.

8.2 **Creating and Using Groups**

Groups are shortcuts for selecting several fixtures at once. They can be recalled from the Group Directory (see Figure 8.4, “The Group Directory”) that you open by pressing Open + Group. Whilst the Autopallettes function will create groups such as All Studio Color 575, Odd Techno-beam Iris and Even Studio Spot 575, it can be helpful to create show-specific ones. For the tutorial show, you should make groups for:

- All Technobeams and Studio Spots on Rear Truss
- Technobeams 1-3 Keyboards Specials Group
- Technobeams 4-5 Drum Riser Specials Group
- Technobeams 6-8 Guitar Specials Group
- Studio Spots 1+5 Vocals Specials Group
- Inner Studio Colors 3-8
- Outer Studio Colors 1+2+9+10
- All Screen desk channels

To record a group:

1. **Fixture 1 Thru 3**: select the desired fixtures in the Programmer.
2. **Record, Group**: the Group Directory window opens.
3. Select a location in the Group Directory window by pressing the on-screen button; see Figure 8.4, “The Group Directory”.

Alternatively, enter a number for the group on the keypad and press Enter.
8.4 The Group Directory

Tip
You can name your group by pressing Set directly after recording it, or later by pressing Set together with the group you wish to name in the Group Directory window.

To use groups to select fixtures during programming, use the Group key on the console or the buttons in the Group directory window:

- Group 1 Enter: selects group 1 into the Programmer.

Or:

- [All Studio Color 575] Enter: selects the group All Studio Color 575 into the Programmer.

8.3 Assigning Values to Parameters

Fixture parameters are accessed through the parameter type keys: Intensity, Position, Colour and Beam. When you select a fixture, its intensity can be directly assigned by using the I-Wheel on the right of the console, and position (pan and tilt) can be assigned by using the Trackball (when in position mode).

Note: All parameters can also be adjusted via Direct Value Entry. For parameters appearing on the parameter wheels, you can touch and hold Set, then press the associated button on the Wheels Toolbar to open a direct value entry dialog; see Direct Value Entry (p.164)

8.3.1 Assigning Intensity

As well as using the I-Wheel, you can assign intensity with the @ key and numeric keypad:

- Fixture 1 @ 5, Enter: assigns Fixture 1 to 50%.
• **Fixture 1 @ 70, Enter**: assigns Fixture 1 to 70%.

• **Fixture 1 @ 05, Enter**: assigns Fixture 1 to 5%.

There are also quick ways to assign fixtures to full or zero:

• **Fixture 1 Full**: assigns Fixture 1 to full.

• **Fixture 1 Out**: assigns Fixture 1 to zero. The Out button is on the Main Toolbar at the bottom of the right-hand screen.

8.3.2 Assigning Position

Position can be assigned using the Trackball in position mode, or by using the parameter wheels. To put the Trackball into position mode, toggle the adjacent top right trackball key; the Trackball will glow blue. Alternatively, press the Position key and you can control the pan and tilt movements of the fixture on the parameter wheels. This can be useful for adjusting pan and tilt separately.

Tip

Pressing the bottom right trackball key puts the Trackball into Ortho mode. Pan and tilt will be adjusted independently as you move the Trackball to give fine control of one without disturbing the other.

8.3.3 Assigning Colour and Beam

There are two ways to assign colour and beam parameters depending on the fixture type. Some continuous parameters, such as colour mixing, are controlled by the parameter wheels. Some parameters, such as gobo and fixed colour wheels, are in discrete steps (known as ‘slotted’). These are controlled by the Slot Toolbar on the right-hand touch screen. The functions available on the Slot Toolbar will vary according to the selected fixtures; see Figure 8.5, “The Slot Toolbar for a Studio Color 575” and Figure 8.6, “The Slot Toolbar for a Studio Spot 575”.

Figure 8.5. The Slot Toolbar for a Studio Color 575

Figure 8.6. The Slot Toolbar for a Studio Spot 575

Assigning Continuous Colour and Beam Parameters

To assign continuous colour or beam parameters:

1. Select the required fixtures.

2. Select either colour or beam using the parameter type keys located below the parameter wheels. Legends will appear above the parameter wheels. If there
are more parameters than parameter wheels, you can page through these by pressing the parameter type key again.

3. Assign the parameters using the parameter wheel. Some parameters of some fixtures have several modes; for example, the gobo wheels of the Studio Spot 575 can be in Slots, Spin or Random mode. The modes are shown next to the parameter wheel legend, and you can select the mode by pressing the legend:

Assigning Slotted Colour and Beam Parameters

To assign slotted colour or beam parameters:

1. **Fixture 1 Beam**: select the required fixtures and parameter type.

2. **[Gobo] → [Stars]**: Click on one of the parameter functions on the Slot Toolbar. A submenu of slot positions will appear from which you can select the desired slot:

Controlling Fixture Functions

You can control fixture-specific functions such as Lamp On, Lamp Off and Reset from the Fixture Control Toolbar. The available functions will depend on the currently selected fixture.

To use the Fixture Control Toolbar, select a fixture or group, then select Control on the right of the Slot Toolbar and select the fixture function you require. Make sure that you restore the setting to Fixture Idle afterwards, noting that some fixtures require control commands to be sent for a few seconds before restoring idle.

![Fixture Control Toolbar for a Studio Spot 575](image)

Figure 8.7. The Fixture Control Toolbar for a Studio Spot 575

Important

Fixture function commands can be placed in the Programmer and recorded into cues. While this is a very powerful feature, it must be used with care...
8.3.4 **Fanning Parameters**

Sometimes you may wish to assign parameters with an offset across consecutive fixtures, so that the value for a particular parameter differs by a fixed step from one fixture to the next. This is known as ‘fanning’. For example you could:

- Fan the positions of the Studio Spots across the stage from corner to corner.
- Fan the intensities of the desk channels (100%, 80%, 60%, 40%).

To fan a parameter:

1. **Fixture 1 Thru 7 @ 50**: select the fixtures and bring their intensity to 50%.
2. Press and hold the **Fan** key, whilst moving the I-Wheel.

To fan other parameters, press and hold the **Fan**, whilst moving the desired parameter wheels.

When fanning, the fixtures at either end of the range take the higher and lower values, with those in between evenly spread across the intervening range. The value change when fanning is always relative to the starting value; if there is no starting value, the parameter will fan from 0.

8.4 **Creating and Using Palettes**

Palettes are the visual building blocks of each specific look on stage, and they are categorised into the four parameter types: **intensity**, **position**, **colour** and **beam**. Palettes can be used to apply these building blocks across large numbers of fixtures, so for example you do not have to remix a particular colour each time it is used in a show.

When you record a cue or scene after assigning fixture parameter values using palettes, Wholehog OS keeps a reference to the palette, rather than a numerical value. Only when you play back the cue or scene does the console looks up the numerical value in the palette. This means that if, for example, you change your mind about a specific position (perhaps because the drum riser is moved downstage), updating the palette will in effect automatically update every cue that that palette was used to build. This is a very powerful feature, as you can easily make changes that are global across your whole show.

Examples of possible palettes for the tutorial rig are:

- Position palette: All Technobeams on Keyboards
- Position palette: All Technobeams on Drums
- Position palette: All Technobeams on Vocals
• Position palette: All Technobeams on Guitar
• Colour palette: All Studio Colors at Magenta

Palettes are stored in palette directory windows, which can be opened by pressing Open and the associated parameter type key: Intensity, Position, Colour, Beam.

To record, for example, a position palette:

1. Position the Technobeams on the drum riser, accessing each one at a time and moving it into position.
3. [Palette 2]: choose a location in the directory by pressing the on-screen button.

Or, using the command line:

• Record Position 2, Enter

If you leave out the palette location:

• Record Position, Enter

The palette will be recorded in the next available location.

Tip
You can name your palette by pressing Set directly after recording, or later pressing Set together with the palette you wish to name in the palette directory.

To use a palette, select it from its directory window. The palette will directly affect the currently selected fixtures, as long as the palette contains parameter information for the selected fixtures. A palette that puts all Studio Colors in the rig to deep red will therefore apply this immediately to any Studio Colors that are in the current selection.

For example:

2. [Studio Color 575] 3 Thru 5: select the fixtures.
3. [Palette 2]: select the palette from the Colour Directory window.

8.5 Find Out More

For more information, see the Reference (p.59) section of the manual:
For: The Programmer
See: Selecting Fixtures, Modifying Parameters (p.155)
For: Editors
See: Working with Editors (p.113)

For: Selecting Fixtures
See: Selecting Fixtures (p.155)

For: Groups
See: Working with Groups (p.181)

For: Setting parameters
See: Modifying Parameters (p.160)

For: Palettes
See: Working with Palettes (p.187)

For: Fanning
See: Fanning (p.173)
9.1 Building the Look

Once you have created the ‘building blocks’ for your show, you can start building cues by mixing selections of groups, palettes and individual fixture parameters. For example:

- [Technobeams Drums] Full, Position [Drums], Colour [Blue], Enter

This sets the Technobeams Drums group to full intensity, to the Drums position palette setting, and applies the Blue colour palette to them. Note that the parts of this command that are shown in [brackets] are user-defined labels; in this case group and palette names.

9.2 Recording a Cue

Now that you have fixtures selected and intensity, position, colour and beam assigned, you can record your first cue. For simple programming, the console allows you to record cues quickly to one of the playback masters, ready for immediate playback:

- Record, Choose : press the Choose key for the master of your choice:

This will create a new cue in a new cuelist on the selected master. You can make further states in the Programmer and record new cues in the same way; the console will automatically increment the cue number and store to the chosen cuelist. If you wish to start a new cuelist simply choose another master.

Note that when you record a cue, the values remain in the Programmer, but the background colour changes from blue to grey. This indicates that the contents of the Programmer are available for recording to another cuelist, but not to the same cuelist. You can keep the values in the Programmer to act as the basis for the next cue on the same list, but because of tracking, only the changed parameter values will be recorded. For an overview of tracking, see Tracking (p.6).
9.3 Assigning Timings

When you record a cue, it is given the default crossfade times. You can change the default times in the Default Timing pane in the User Preferences window.

The In Time is the duration over which fixture parameters will change when the fixture's intensity is increasing. The Out Time is the duration over which fixture parameters will change when the fixture's intensity is decreasing. A cue with different In and Out times is said to have a **split fade**.

To change the timings of a cue:

1. Press the Choose key of the master that the cue is in.
2. **Cue 1 Time 10, Enter**: sets the In and Out time of Cue 1 on the selected master to 10 seconds.

To create a split fade, with different in and out times:

1. Press the Choose key of the master that the cue is in.
2. **Cue 1 Time 10 / 20, Enter**: sets the In time to 10 seconds and the Out time to 20 seconds, on Cue 1 on the selected master.

9.4 Find Out More

For more information, see the *Reference (p.59)* section of the manual:

- **For: Cues**
 - See: *Working with Cues (p.211)*

- **For: Cue timings**
 - See: *Working with Cue Timing and Ordering (p.227)*

- **For: Cuelists**
 - See: *Working with Cuelists (p.245)*

- **For: Effects**
 - See: *Working with Effects (p.253)*
Section 10: Playback

10.1 Playing Back Cues

When you recorded your cues, the console automatically created a new cuelist on the chosen master, so you can now run your cues directly from that master. The playback controls for each master are shown in Figure 10.1, “Playback Controls”.

![Playback Controls Diagram]

The playback controls work as follows:

- **Go**: if the master is inactive pressing this key will output the current cue in its cuelist to the stage. If already active then pressing Go advances to the next cue in the cuelist, unless there is a paused crossfade, in which case the crossfade will be restarted (see Halt/Back below).

- **Halt/Back**: pauses any running crossfades. If there are no running crossfades then it will start a fade back to the previous cue.

- **Fader**: controls the intensity of fixtures under the control of this master.

- **Flash**: momentarily puts the intensity of fixtures under the control of this master to the full programmed value, as if the fader had been put to maximum.

You can also control the running of the cuelist using the main controls, located to the right of the ten masters. The main controls operate whichever master is chosen with its Choose key located above it. The Choose key will light up blue to show the chosen master.
You can increase or decrease the rate of a running cue by pressing and holding the master’s \textit{Choose} key and adjusting the left-hand parameter wheel. Alternatively, you can use the sprung Rate Wheel on the left of the console to momentarily override the rate of the cue.

Once the cuelist reaches the end it will loop back to the first cue in the list.

\textbf{Tip}

The Programmer will have priority over fixture parameter values outputted by the masters. Press Clear to remove the contents of the Programmer to insure that the output on stage is not effected by the current Programmer contents.

10.2 Understanding Feedback

There are several ways in which the console shows you the status of the running cues. The playback control key LEDs display feedback information:

- **Go key (Green):** When solidly lit, this indicates that a crossfade is in progress. When flashing it indicates that a crossfade has been paused.

- **Halt/Back key (Red):** When solidly lit, this indicates that this master is controlling parameters other than intensity. When flashing it indicates that its control of those parameters has been overridden by other masters.

- **Flash key (Red):** When solidly lit, this indicates that this master is controlling fixture intensities. When flashing it indicates that its control of intensity has been overridden by cues on other masters.

The Playback Bar located on the display immediately above the masters shows the details of the running cuelist on each master:

The main information shown on the Playback Bar is:

- If the master is empty, its number is shown.

- The number and name of the cuelist.

- The current cue and its overall time. When the cue is running, it is displayed in green text and the time counts down.

- The next few cues and their times. If you want to see more cues, click and drag the top of the Playback Bar upwards to increase its size.

- The master level as a percentage. If the master is below 100%, then a red bar appears indicating the level.
For more information on the Playback Bar, see Control and Playback Toolbar Feedback (p.280).

10.3 Find Out More

For more information, see the Reference (p.59) section of the manual:
For: Cuelist Playback
See: Cuelist Playback (p.265)
For: Rate Overrides
See: Overriding Cuelist Rate During Playback (p.285)
Section 11: Saving and Shutting Down

11.1 Saving the Show

Your show data is stored on the Wholehog console's internal hard disk in a location that you select when creating the show. The console saves changes to the disk as they are made, and in the event of a power failure, the battery backup will ensure that all saves are completed before the console shuts down.

11.1.1 Saving to CD-ROM

To store a copy of your current show to a CD-ROM use the File Browser pane of the Show Manager window; see Figure 11.2, “The Current Show pane of the Show Manager window”:

1. Setup → Shows → CD Burning
2. Navigate to the Folder that contains the show you wish to burn using the left-hand file list. Select it and press Add to CD. Alternatively drag it into the right-hand CD Master list.
3. Repeat for all the shows you wish to copy to CD.
4. Insert a blank disk and select Burn.

To stop files being burnt, or to make new selection for another CD-ROM, select Clear CD Master.

Figure 11.1. The CD Burning pane of the Show Manager window
11.1.2 **Saving to Zip Disk or USB Drive**

To store a copy of your current show to a Zip disk or USB drive use the Current Show pane of the Show Manager window; see Figure 11.2, “The Current Show pane of the Show Manager window”:

1. Insert a Zip disk into the drive located under the console's front wrist rest, or a USB drive into an available USB port.
2. Setup → Shows → Current Show
3. Press the Backup button.
4. Select a location, file name and description for the backup show file.

![Figure 11.2. The Current Show pane of the Show Manager window](image)

11.2 **Backing Up**

It is good practice to backup your show data regularly using the following steps:

Use the Current Show pane of the Show Manager window to store a copy of your current show to another location on the console's hard disk:

1. Setup → Shows → Current Show
2. Press Backup.
3. Select a location. A copy of your show will be saved with ‘_bck’ appended to its file name.
11.3 **Shutting Down**

To shut down the console:

- **Setup → Quit**: the Quit button is on the right hand end of the Setup Toolbar.

The Shut Down dialog will open (see Figure 11.3, “The Shut Down Dialog”), with the following options:

- **Shut Down**: shutting down will turn the Wholehog console off completely.
- **Restart Console**: restarting is like shutting the console down and turning it on again, and will take you to the Start window.
- **Log Off**: logging off will close your current desktop, Programmer and output screens, as well as closing the current show file. The console is left powered up and running, ready for you or another user to log on.
- **Cancel**: cancels the quit command.

In all cases except cancel, your show data is automatically saved to disk.

![Figure 11.3. The Shut Down Dialog](image)

11.4 **Find Out More**

For more information, see the Reference (p.59) section of the manual:

For: Saving the Show
See: Managing Show Data (p.121)
For: Shutting Down
See: Restarting and Shutting Down (p.121)
Part R. Reference

The Reference part of the manual describes in detail how to work with the Wholehog OS. While it is possible to work through the Reference in order, it is designed to be used to look up how particular features of the console work, as and when you need them. If you want to be guided through the main operations of setting up the console, and programming and running a show, use the Tutorial (p.17).
12.1 Setting Up the Console

Many aspects of the Wholehog Operating Software are configured in the Control Panel and the User Preferences window. Settings in the Control Panel apply to the console hardware, while those in the User Preferences window are specific to the current show. To open these windows, press Setup and then either Control Panel or Preferences from the toolbar at the bottom of the right-hand touch screen.

Both the Control Panel window and the User Preferences window have several panes, grouping their contents according to function. Select the desired pane by selecting from the list on the left hand side of the window, see Figure 12.1, “Pane lists for the Control Panel and User Preferences windows”.

![Figure 12.1. Pane lists for the Control Panel and User Preferences windows](image)

Tip

User preference settings are stored as part of the show file. You can also independently save your preference settings and load them into another console or show; see Saving and Loading Your Preferences (p.125). Control Panel settings are unique to the console and must be configured on each console.
12.1.1 **Power**

You can connect Wholehog consoles to any mains supply between 100 and 240V AC. In the event of power failure, the Wholehog 3 uses its battery backup supply to save the show data to its hard disk, and shut down the console.

12.1.2 **Touch Screens**

The two large screens are touch-sensitive, so you can access buttons and data directly by touching them. For information on maintenance of the touch screens, see *Care of Touch Screens on Wholehog Consoles* (p.415).

Calibration

The touch screens may occasionally need to be calibrated to ensure that where you are pressing is aligned with the screen's display. To recalibrate on start-up, select *Touchscreens* in the Start window. Touch each target as it appears sequentially; see *Figure 12.2, “The Calibration Screen”*. After the calibration sequence is complete, press Enter. You can press the Set key to start the process again if necessary.

You can also calibrate the touch screens at any time by pressing the Calibrate Touch Screens button in the Displays pane of the Control Panel.

![Figure 12.2. The Calibration Screen](image)

Brightness

You can adjust the brightness of the touch screens by holding down the Setup key and adjusting the parameter wheels labelled Left Backlight or Right Backlight.

Tip

If you find the graphics on the screens are too bright, you can change the console's colour scheme to a darker one in Setup → Preferences → Appearance.
Backlight Off Time

The backlights that illuminate the touch screens switch off automatically after a time if the console is idle, to maximise their life. You can adjust the amount of time the backlights wait before switching off in the Appearance pane of the User Preferences window:

1. Setup → Preferences → Appearance
2. Adjust the Backlight Off time located at the bottom of the pane, either by pressing the arrows to increment or decrement the value, or by clicking on the value, pressing Set and typing in a new value.
3. Select OK to apply and close.

Tip

Once the Wholehog displays are asleep you can wake them up by pressing any key. It is a good idea to use the Pig key as this will prevent you from accidentally changing any data within the show.

Disabling Touch Screens

You can disable the touch-sensitive action of the screens, or turn them off all together, in the Displays pane of the Control Panel:

1. Setup → Control Panel → Displays
2. Press the buttons for the LCD and Touchscreen functions to toggle them on or off.
3. Select OK to apply and close

12.1.3 External Displays

You can attach two external displays to the Wholehog 3 using standard VGA connectors. The screen resolutions supported are:

- 800x600
- 1024x768
- 1280x1024

To use external displays, you must enable them and set the screen resolution in the Displays pane of the Control Panel:

- Setup → Control Panel → Displays

You will need to restart the console to enable the external monitors; see *Restarting and Shutting Down* (p.121).
External Touch Screens

You can use external touch screens with Wholehog consoles, connected to one of the console's USB ports. Wholehog consoles support several Elo brand models as shown in the following table. A 12" and a 17" touchscreen is available from High End Systems (part numbers #7408002 and #61040021). You can find more information about them at www.highend.com/products/controllers/touchscreenmonitor.asp.

<table>
<thead>
<tr>
<th>Size</th>
<th>ELO Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17"</td>
<td>ET1725L-7CWF-1-G</td>
<td>AccuTouch 2216 series</td>
</tr>
<tr>
<td>17"</td>
<td>ET1725L-7UWF-1</td>
<td>Accutouch 3000 series</td>
</tr>
<tr>
<td>17"</td>
<td>ET1739L-8CWA-3-G</td>
<td>IntelliTouch 2700 series</td>
</tr>
<tr>
<td>12"</td>
<td>ET1229L-7UWA-1</td>
<td>Accutouch 3000 series</td>
</tr>
<tr>
<td>12"</td>
<td>ET1215L-7CWA-1-G</td>
<td>AccuTouch 1000 Series</td>
</tr>
<tr>
<td>12"</td>
<td>ET1229L-8UWA-1</td>
<td>IntelliTouch 2500 Series</td>
</tr>
<tr>
<td>12"</td>
<td>ET1229L-7CWA-1-ZBD-G</td>
<td>AccuTouch 2216 series</td>
</tr>
</tbody>
</table>

As with any external display, you need to enable external touch screens in the Control Panel; see *External Displays* (p.63). The display will be automatically detected by the console, and should be calibrated in the same way as the console's built-in touch screens; see *Calibration* (p.62). If you have two external touch screens, the pointer may initially appear on the other screen to the one you have pressed. If this happens, press the Control key during calibration to swap the touch screens.

12.1.4 **Desklights**

You can adjust the brightness of the desklights by holding down the Setup key and adjusting the third parameter wheel. You can also use the fourth (right hand) parameter wheel to adjust the brightness of the LEDs in the keys on the front panel.

By default, the desklights are white while the console is being used and turn blue after a period of inactivity; the period is determined by the Backlight Off Time (p.63). If you prefer the desklights always to be blue, you can select Use Blue Desklights in the Appearance pane of the User Preferences window.

12.1.5 **Trackball and Wheels**

The Wholehog 3 has a number of controls that allow continuous input of data rather than discrete values: the Trackball, the I-Wheel, the Rate Wheel, and the four Parameter Wheels.

The Trackball has two modes:

- **Pointer Mode**: controls the on-screen pointer, like a mouse on a personal computer.
- **Position Mode**: controls the position (pan and tilt) of fixtures. The Trackball lights up blue in this mode.
You can switch between the two modes by pressing the top right Trackball key. You can also lock the Trackball to one mode or another in the Track Ball pane of the User Preferences window:

1. **Setup → Preferences → Trackball**
2. Select Pointer or Position from the drop down menu to lock the Trackball in that mode. Select Toggles to restore the ability to change modes with the top right Trackball key.
3. Select OK to apply and close.

Tip
Make sure you have an external mouse connected if you lock the Trackball in position mode, and you don't want to control the on screen pointer only by pressing the touchscreens.

Trackball Keys

You can configure the function of the four keys above and below the Trackball, according to the current mode (pointer or position); this is known as ‘mapping’. For example, in pointer mode you could have Right Click, Left Click, Flip and Ball Mode mapped, in position mode you could have Flip, Next, Ortho Toggle and Ball Mode mapped. Trackball key mapping can be assigned in the Track Ball pane of the User Preferences window; see Figure 12.3, “The Track Ball pane of the User Preferences window”.

![Figure 12.3. The Track Ball pane of the User Preferences window](image)

The following navigation functions are available:

- **Ball Mode**: switches the Trackball between position and pointer modes.
• **Ortho Toggle:** switches the Trackball between Ortho and Normal. When in position mode, with ortho on, the Trackball will only control pan or tilt, not both at the same time. This can be useful for accurately setting fixtures.

• **Right Click:** the same as a right-click with the mouse. This is usually used to bring up a contextual menu with commands such as copy and paste.

• **Left Click:** the same as left-click with the mouse.

• **Shuffle:** shuffles the pointer across windows, bringing that window to the front (unlike shuffle on the Window Control Toolbar which shuffles the screen view).

• **Swap to Screen:** moves the pointer between screens (useful for when external displays are connected to quickly move between screens).

• **Set:** the same as the Set key, but closer to the Trackball for quick cell editing.

• **Close Window:** closes the active window.

In addition, the following fixture and playback functions are available:

• **Next:** sub-selects the next fixture in the current selection. See *Sub Selections* (p.158).

• **Back:** sub-selects the previous fixture in the current selection. See *Sub Selections* (p.158).

• **Select All:** selects all the fixtures currently in the Programmer. See *Select All* (p.157).

• **Flip:** changes the pan and tilt of a moving head fixture to point at the same position on the stage, but from the other end of its movement range. See *Flip* (p.162).

• **Fade Changes:** toggles the state of the Fade Changes button in the active editor. See *Fade Changes* (p.206).

• **Next Page:** advances to the next page in the page directory. See *Changing Page* (p.304).

• **Out:** assigns the current selection’s intensity to zero; see *Intensity* (p.161).

The default settings for the Trackball keys are:

<table>
<thead>
<tr>
<th>Trackball Key</th>
<th>Pointer Mode</th>
<th>Position Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>top left</td>
<td>flip</td>
<td>flip</td>
</tr>
<tr>
<td>top right</td>
<td>ball mode</td>
<td>ball mode</td>
</tr>
<tr>
<td>bottom left</td>
<td>left click</td>
<td>next</td>
</tr>
<tr>
<td>bottom right</td>
<td>right click</td>
<td>ortho toggle</td>
</tr>
</tbody>
</table>

Trackball, Parameter Wheel and I-Wheel Sensitivity

The sensitivity of the Trackball when in position mode, the I-Wheel and the Parameter Wheels can be adjusted in the Sensitivity pane of the User Preferences window.
The sensitivity determines how much the value being controlled changes for a given movement of the control. For example, setting the sensitivity of the parameter wheels to Slow will mean that you have to turn the wheel a lot to change the controlled value by a given amount. A High sensitivity will mean that you have to move the wheel only a little to get the same change of value.

Using an External Mouse

You can also use an external mouse or trackball to supplement the built-in Trackball. This will always control the on screen pointer, irrespective of the Trackball mode.

The external mouse is connected by a standard PS2 5 pin mini-DIN connector, and you can adjust its sensitivity in the Sensitivity pane of the User Preferences window. The double click speed for the mouse and Trackball can be assigned in the Key Timings pane of the User Preferences window. Windows based consoles support USB mice.

12.1.6 Keys and Buttons

In the manual the word ‘key’ is used to indicate a hardware button on the Wholehog 3's front panel. For example: ‘press the Enter key’. The word ‘button’ refers to ‘virtual’ buttons that can be pressed on the touch screens or clicked on with the Trackball or mouse.

You can adjust various key timings in the Key Timings pane of the User Preferences window:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key repeat delay</td>
<td>When you hold down a key, this is the delay before it starts to repeat.</td>
</tr>
<tr>
<td>Key repeat period</td>
<td>When you hold down a key, this is the time between repeats.</td>
</tr>
<tr>
<td>Key double press time</td>
<td>When you press a key twice within this time, the console interprets this as a double-press.</td>
</tr>
</tbody>
</table>

Note that these timings only apply to the physical keys on the console's front panel, not to on-screen buttons.

Tip

Double-pressing a key is often a shortcut way of opening the window associated with the key; for example, double pressing the Beam key will open the Bean directory window. If you prefer not to use the double-press shortcuts, then assign the double-press time to zero to disable it.

12.1.7 Keyboards

Using an External Keyboard

You can connect an external keyboard to the console via the standard PS2 5 pin mini-DIN port or one of the console's USB ports. Choose a keyboard model, and assign the keyboard layout according to the language of the keyboard you have connected, in the Keyboard pane of the Control Panel.
You can adjust the timings for Repeat Delay, Repeat Period, and Double Press in the Key Timings pane of the User Preferences window.

Tip

You can use an external keyboard to control many of the console’s functions, as well as entering numbers and text; see *Keyboard Shortcuts* (p.407).

Using the On-screen Keyboard

You can use the on-screen keyboard to enter text when an external keyboard is not present; see Figure 12.4, “The On-screen Keyboard”. When prompted to insert text, press the Set key to launch a touch-screen keyboard. You can use the Pig key as a ‘shift’ for uppercase characters. Press the Enter key when you have finished typing.

To close the on-screen keyboard without making any changes, press Set instead of Enter.

![Figure 12.4. The On-screen Keyboard](image)

12.1.8 **Date and Time**

The console has a built in clock. Assign the date, time and time zone in the Time and Date pane of the Control Panel. You can also assign the format for the date and time in the Appearance pane of the Preferences window.

You will have to restart the Wholehog OS and its currently running show for changes to date and time to take effect; see *Restarting and Shutting Down* (p.121).

12.1.9 **Printers**

The Hog 3PC will print directly to the default printer that you have set up in Windows, without needing any additional setup in Wholehog OS. The remainder of this section describes how you can connect printers to other Wholehog OS consoles.
Adding a Printer

You can connect a printer directly to a Wholehog 3 console's USB port, or to the network using a hub or switch. Network printers can be used by all consoles on the network.

If you are not sure if your printer is supported by the Wholehog 3, follow the steps below until Page 5, and check the list of available printer manufacturers and models. Once you are sure your printer is supported, connect it to the USB port or network and set it up:

1. Setup → Control Panel → Printers: open the Printers pane (see Figure 12.5, “The Printers Pane of the Control Panel”).
2. Click on Add. You will be guided through the setup procedure.
3. **Page 1**: Enter a printer name, location and description. The name is used when you choose a printer to print with. Location and description are for users' information only, and are optional.
4. **Page 2**: Select the type of connection; either network or USB.
5. **Page 3 (network printers only)**: Choose the type of network connection you use to connect to your network printer. If the printer is connected to a Microsoft Windows computer and is shared over a network, choose the SMB option. If your printer is HP JetDirect or AppSocket compatible, choose that option. If your printer has IPP support, you may use IPP. If both IPP and AppSocket/HP JetDirect are available, try the AppSocket/HP JetDirect option first.
6. **Page 4 (network printers only)**: Enter the network address of your printer. For shared Windows printers, you may need to enter a username and password, in the form: `user:password@printserver.mynetwork`.
7. **Page 5**: Select the manufacturer and model of your printer.
8. Page 6: Check that all the information displayed is correct. If it is, press Finish to add your new printer.

On return to the configuration panel, you should see your new printer displayed in the printer list. If it is not there, click on the Update List button. If it still doesn't show, try installing the printer again, ensuring you enter the printer's network address correctly.

Setting Printer Defaults

You can assign printer defaults from the Control Panel:

- Setup → Control Panel → Printers: open the Printers pane; see Figure 12.5, “The Printers Pane of the Control Panel”.

To assign a printer as the default printer, so that it is automatically selected when printing, select it in the list of printers, and click on Set Default.

To choose default settings (paper size, paper source, and so on) for a printer, select it in the list and click on Configure to open the Printer Properties window. The available options will depend on the printer model; see the printer's documentation for more details. Once you have set the options, click OK.

Modifying a Printer

You can modify a printer from the Control Panel:

1. Setup → Control Panel → Printers: open the Printers pane; see Figure 12.5, “The Printers Pane of the Control Panel”.

2. Select the printer you want to modify from the list.

3. Click on Modify. You will be guided through options, which are the same as for Adding a Printer (p.69) except that you cannot change the printer's name.

Removing a Printer

To remove a printer from the console:

1. Setup → Control Panel → Printers: open the Printers pane; see Figure 12.5, “The Printers Pane of the Control Panel”.

2. Select the printer you want to remove from the list.

3. Click on Delete.

Important

You cannot undo removing a printer.
12.2 **Building a Hog-Net Network**

The following Wholehog consoles are network capable:

- Wholehog 3
- Road Hog Full Boar
- Hog iPC
- Hog 3PC

On the back of each one of these consoles is a dedicated Base-T Ethernet jack that can be used for connecting to a network of DMX Processors, IOPs, computers, and other consoles. If there is more than one Ethernet jack on the back of the console, then the jack labeled Hog-Net should be used. The hardware on personal computers running Hog 3PC will vary but at least one 100 Base-T Ethernet hardware device must be properly installed and enabled in order for Hog 3PC to successfully communicate to other nodes on a network.

All components of a Wholehog network should be connected using category 5 Ethernet cables and using at least a 100mb Ethernet switch or router. Gigabit switches are also Hog-Net compatible.

The simplest Hog-Net network consists of a console and a DMX Processor connected to the lighting rig. Only slightly more complex is the case of a system with a single console and several DMX Processors connected together with an Ethernet switch. Large systems can have several consoles, Hog 3PC systems, and DMX Processors, controlling large lighting rigs.

12.2.1 **Configuring Console Network Adapters**

At the top of the networking tab in the Control Panel, is a drop down menu of all the installed network adapters usable by the Wholehog OS. Hog iPC, Road Hog Full Boar, and Wholehog 3 consoles will only list one network adapter while Windows computers running Hog 3PC might have more than one network adapter listed depending on how many network adapters are installed and enabled on the computer.
After selecting an adapter from the drop down menu, the area below the menu will show the adapter’s current status:

- A link status of Up indicates the adapter is connected to a network and is ready to be configured to communicate to other network devices.
- A link status of Disconnected indicates the adapter is running but is unable to communicate to other nodes because the network cable is not connected to a network.
- A link status of Down indicates the adapter is either disabled or in an unstable state and is not usable for show operation.

Important

Only network adapters with a link state of UP will be able to communicate with other nodes on the network. If none of the listed adapters are in the UP state then the Wholehog OS will not operate on a network and will instead operate as a standalone console using a loopback address.

Configuring an IP Address for a Console Network Adapter

In order for a network adapter to properly communicate on a network it must be configured with an IP address setting that is compatible with other devices on the network. There are three main options when configuring an IP address for an adapter:

Default IP address: select this option to use an IP address of 172.31.0.1.

Obtain an IP address using DHCP: select this option when running the console on a network that contains a DHCP server such as a DHCP router or a Wholehog console running a DHCP server.
Important
If you choose to obtain an IP address using DHCP on the console and no DHCP server is present on the network, then the console will revert to a loopback address of 127.0.0.1 which is not a usable network address for network show operation. In this case you should use a custom IP address.

Custom IP address: This option allows you to specify the IP address and subnet mask settings of the Console. This option is most commonly used on networks where a DHCP server is not present but multiple unique IP addresses need to be specified.

Enabling the DHCP Server
In addition to being DHCP client compatible, all network enabled consoles are also capable of running a DHCP server themselves. Enabling DHCP allows the console to hand out IP addresses to other consoles, DMX Processors, and computers on the network without needing to manually configure static IP addresses for every device on the network.

Choosing BOOT Server ONLY
Included in the DHCP server options of the console is the Boot server. The Boot server process is separate from the DHCP server and is used by Wholehog consoles to provide remote software imaging for the DMX Processor 8000. You can select options to either run only a Boot server (with or without a custom address range) or to run both a Boot server and a DHCP server. When running both, the custom address range applies to both the DHCP server and the Boot server.

Using a Custom DHCP Server Range
Sometimes in more complex networks where more than one DHCP server is present, specifying a custom DHCP server range is necessary to avoid IP address conflicts. Using a custom DHCP address range applies to both the DHCP server and the Boot server processes. To use a custom DHCP range on your console enable the Use custom address range button and specify the start and end addresses in the fields below the button.

Firewalls and Hog 3PC
Firewalls help to provide increased network security by controlling access to private networks and computers based on the public IP address of the client. Since the Wholehog OS depends on multi-cast network traffic for communication to other system devices it is encouraged that users configure their network and computer firewalls and security settings to allow for Hog-Net network traffic. For some firewall applications this might mean turning off the firewall completely.

Configuring Hog-Net Network Settings on a DMX Processor
In the front panel menu system of the DMX Processor 8000 is a network configuration menu used to configure IP address settings for that particular node. This menu can be accessed by first selecting Network, Hog-Net, Hog-Net Config.
Configuring the IP addresses and subnet addresses on Wholehog processors follow the exact same rules and principals as outlined for network adapters consoles in *Configuring Console Network Adapters* (p. 71)

Typical Hog-Net Network Configurations

Example A: A single console and single DMX Processor.

```
Wholehog console
Static IP 172.31.0.1
Run CHCP server
DMX Processor 8000
Obtain IP using DHCP
```

Example B: The console is a DHCP server, and all other nodes obtain an IP address from it.

```
Wholehog console
Static IP 172.31.0.1
Run DHCP server
DMX Processor 8000
Obtain IP using DHCP
```

Example C: A DHCP Router serves all components.
Example D: All components have a custom unique static IP address.

12.2.2 Port Number

Since multiple shows can be run on a single network, each show server running on the network must have its own port number to keep lighting data for each show on the network separated. Nodes connecting to the show server must then have the same port number as the show server console. For example, a console running a show server on the network on port 6600 means other nodes such as DMX Processors on the network will need a port number of 6600 as well to join that same show.
12.2.3 **Node Types and Net Numbers**

There are two elements that help to identify a node’s role in a network show: node type and net number. The node type is inherent to device hardware and cannot be changed. For example, a Road Hog Full Boar is a “console” node type while a DMX Processor 8000 is a DMX Processor node type. Secondly, there is the device’s net number. The net number is a user-configurable setting that further defines the node’s role in a network show. For example, a DMX Processor 8000 set to net number 1 means the DMX Processor 8000 will load and output patch information stored in the show file for DMX Processor 8000 #1.

Important
Within a single node type each device must be set to a unique net number. For example you cannot set two physical DMX Processor 8000s to net number 1 in a show. Only one of the DPs will actually load show data while the other DP will sit idle as a duplicate. Consoles are the only exception to the duplicate net number rule. Beginning in software v3.2.0 individual consoles can be set to identical net numbers which allows them to fully track one another in terms of their current page, chosen master, and playback state. This “tracking” feature, when combined with the failover functionality discussed in Configuring the Network for Console Failover (p.78) provides the user with the ability to configure a tracking backup console on the network.

12.2.4 **Connecting Multiple Consoles**

Multiple Wholehog consoles can be connected together in various configurations when running on the same port number. Client/Server configuration allows multiple users to program on the same show file. Console Failover provides network backup of two or more consoles running the same show. Console Tracking creates redundancy of all console functions across multiple consoles. You should link all consoles and network devices to an Ethernet switch using certified Category 5 non-crossover cables.
12.2.5 Configuring the Network for Client/Server

![Diagram showing network configuration]

Running the Console as a Show Server

When the Run Server option in the Settings window of the start screen is checked, the console is enabled as a show server. A show server console is able to do three main things that it would not otherwise be able to do as a client:

1. **Start New Shows**
2. **Launch existing shows from disk**
3. **Connect to and sync a local copy of show data from other show server consoles on the network.**

Since consoles that are enabled as show servers continuously sync and store local copies of show data during programming, setting up more than one show server in your network allows for continued show operation should one console fail. This is method of redundancy is called “fail-over” and is enabled in software v3.2.0 and greater. See *Configuring the Network for Console Failover* (p.78)

Running the Console as a Client

When the Run Server option in the Settings window of the Start screen is not checked, the console will operate only as a client to other show server consoles on the network. As a client, the console will not keep a local copy of the network show file and as a result will be forced to log off the connected show session if all show servers running on the network are logged off.

Tip

The generic word server is often mentioned when working with a Wholehog OS system. There are three types of servers that are at work...
in a networked Wholehog show. The DHCP server manages IP address assignments to other consoles, nodes, and computers on the network through the use of Dynamic Host Control Protocol (DHCP). A Show server refers to the server process running on the console, which manages show data and distribution. The DHCP server and the Show server are independent of one another and do not need to be running on the same console. The Boot server process is used by Wholehog consoles to provide remote software imaging for the DMX Processor 8000.

12.2.6 Configuring the Network for Console Failover

When two or more show server consoles are connected to a network show, a feature known as failover is automatically enabled, allowing for one of the consoles to “fail” without causing a loss of control over the show data or dmx output. Each show server on the network has the ability to take over control of the show should one of the other show server consoles suffer from power loss, a severed network connection, or localized failure. Users are encouraged to run at least two networked show server consoles in live performance situations in the event that, if one console fails, the show can remain running on the secondary console while the first console is recovered.

To enable console failover:

1. Connect two consoles via an Ethernet switch.
2. Enable the Run Server option in the Settings window on each console.
3. Configure the primary console as Net number 1 and the secondary console as Net number 2.
4. Log on primary console and then connect secondary console.
After configuring the network for failover, each console connected to the show will monitor the status of the primary console (the console that first loaded the show on the network) for any failures or forced log offs.

In the event that the primary console suffers a critical error or is disconnected from the network, all other consoles connected to the show will post the message shown below, notifying the user that a failover has occurred and indicated which of the other server consoles has taken over as the active show server (primary console).

![Failover Message](image)

If you see this message, first check to see if the original primary console is still physically connected to the network, then power cycle the original primary console and reconnect it to the show.

In the event that the console operator intentionally logged off the primary console, all other consoles connected to the show will post the failover message shown below to indicate that the primary server console has logged off and another server console has assumed the role as the active show server (primary console).

![Log Off Message](image)

Since this message is the direct result of the primary console being willfully logged off from the show there is no need to perform any troubleshooting. Simply reconnect the logged off console to the show and it will once again participate as a show server console on the network.

12.2.7 Configuring the Network for Console Tracking

Console tracking allows two or more consoles to track each other in terms of the chosen page, the chosen master, and playback state while still maintaining individual desktop/programmer experiences between the desks. A backup secondary networked show server console set to the same net number as the primary console is recommended when setting up Wholehog control systems for live shows. This creates system redundancy and protects from total loss of control should the primary console fail.
To enable Console Tracking:

1. Connect two consoles via an Ethernet switch.
2. Enable the Run Server option in the Settings window on at least one of the consoles. You can choose to enable the Run Server option on both consoles to also engage failover functionality.
3. Set both consoles to Net number 1.
4. Log the primary console to a show and then connect the secondary console to the same show.

The two consoles will now mirror each other in terms of chosen master, current page, and playback state.

12.2.8 **More than One Show on the Network**

If you want to run more than one show on the same network, you need to choose a port number for each show. The default port number is 6600, so the second show could be on 6601, the third on 6602, and so on. You need to assign the port number of each console system and network device according to the show it is used with.

12.2.9 **Connecting to an Existing Network**

You can connect the console to an existing ethernet network if desired. Contact the administrator of the network to obtain the correct network settings.
Important
You should disable the DHCP server of the console before connecting to an existing computer network, otherwise it may interfere with the correct operation of the network.

12.2.10 Network File Sharing
You can connect to drives on a local network or remote computer to transfer show files. Only compressed show file backup (.tar.gz or .shw) files can be transferred with Network File Sharing.

Mapping Network Drives
Network drives are available within the Start window and the Backup window.

To map a network drive:
1. Connect a remote computer or network to the Hog-Net network.
2. Click the Browse button in the Start or Backup window.
3. Click on the Map Network Drive button.
4. Enter data for the following fields in the Connect to Network Disk window:
 - **Server name:** the host name or IP address of the remote computer
 - **Share name:** the name of the shared directory on the remote computer
 - **Username:** the user name to access the shared directory on the remote computer (if required)
 - **Password:** the password to access the shared directory on the remote computer (if required)
 - **Domain:** if the user account is a member of a windows domain, enter that domain name here, otherwise leave this field blank.
Note that depending upon your network drive configuration, not all fields may be required.

5. Check the box if you want the connection to be saved with the console. If this option is not selected, then this mapping will be lost when the console is re-booted or power cycled.

6. Check the box to save the password if you wish to have the password for the drive mapping saved with the above option.

Accessing Network Drives

Once a network drive is mapped, it will appear in the Start and Backup windows under the console heading as a valid drive to browse to. Sub folders of the primary networked drive will also be available.

Disconnecting Network Drives

When browsing a network drive, the Eject button is available in the top right corner of the browse window. Pressing this button will un-map and disconnect the network drive.

12.3 Working with Network Processors

The DMX Processor 8000 provides 16 universes of DMX, Art-Net, and E1.3.1(sACN) output. A DMX Processor 8000 needs mains power at any voltage between 100 and 240V AC. For information on hardware installation, see *DMX Processor 8000 Hardware Installation and Maintenance (p.416)*.

You can control the network processor's functions either directly from its front panel, or remotely from a console:

1. **Setup → Network**: open the Network window.
2. In the Network window, you can assign the Network Number for any network processor connected to the network.

3. To set other functions, select the network processor in the left-hand column, and click on the Settings button.

Figure 12.7. The Network window

12.3.1 Using the network processor’s Front Panel Controls

For the remainder of this section, the manual assumes that you are using the network processor’s front panel controls. To navigate through the screens:

- Move the cursor through the options backwards.
- Select the option currently highlighted by the cursor.
- Move the cursor through the options forwards.

The menus use the following conventions:

- OK: Confirm changes and return to the previous screen.
- Cancel: Abandon changes and return to the previous screen.
- Close: Return to the previous screen.

To assign a numerical value:

1. Move the cursor to the value you want to change.
2. Press the key, and the first digit of the number will be highlighted.
3. Use the key to change the value, and the and keys to select a different digit of the number.
4. When you have finished, press until no digits are selected. You can then use and to select options in the usual way.

12.3.2 Network Settings

A simple network of just a console and an DMX Processor will configure itself automatically. If you have a more complex network, you may need to change some of the network settings; see Building a Hog-Net Network (p.71).
Checking and Setting the Net Number

The net number is displayed on the main screen of the DMX Processor in the top right-hand corner. To assign the net number:

1. Main → Network : navigate to the Network Configuration screen.
2. Assign the net number to any value between 01 and 99.
3. OK : return to the Main screen.

Setting the Port Number

To assign the Port Number:

1. Main → Network : navigate to the Network Configuration screen.
2. Assign the Port Number as required.
3. OK : return to the Main screen.

Setting IP Addresses for the Hog-Net Adapter on a DMX Processor 8000

By default, DMX Processor 8000s are set to use DHCP to get an IP address automatically from a Wholehog console. You can turn this off in the IP Config screen:

1. Main → Network → Console → Console Link Config : navigate to the IP Config screen.
2. Set DHCP On or Off.
3. OK : return to the Console Link Status screen.
5. OK : return to the Main screen.

You may want to assign a fixed or ‘static’ IP address, perhaps if the Wholehog system is sharing a network with non-lighting devices such as personal computers. You should contact your system administrator to determine the optimum settings for your network.

To assign a static IP address:

1. Main → Network → Console → Console Link Config : navigate to the IP Config screen.
2. Set DHCP Off.
3. Set the IP Address and Subnet Mask as required.
4. OK : return to the Console Link Status screen.
5. Close : return to the Network Configuration screen.
6. OK : return to the Main screen.
12.3.3 Options and Defaults

The DMX Processor has various options and controls, assigned in the Control Panel screen:

- Main → Control Panel

You can revert all settings to their default values by selecting Set to Defaults.

Tip

The Locked Status, Pin Number, Backlight Off Time and Watchdog settings described below are all held by the DMX Processor, not by the show. Changing show will have no effect on these settings.

Locking the DMX Processor Controls

You can use the Lock function to lock the DMX Processor's controls. The default PIN is 1234; a new PIN can be assigned from a Wholehog console via Setup → Network on the Setup Toolbar. Select the required DMX Processor in the network window and click Settings. Change PIN and OK to apply and close the window.

To lock the DMX Processor locally:

- In the Control Panel, select Lock : the Enter PIN to Unlock screen will appear.

To unlock the DMX Processor locally:

- Enter your chosen 4-digit code number, and cursor right to confirm. The code number will be the default 1234 if you have not changed it to your own.

You can lock and unlock remotely from a console via the DMX Processor Settings window for each specific DMX Processor:

1. Setup → Network : the Network button can be found on the Setup Toolbar.
2. Select the required DMX Processor in the Network window and click Settings to open the DMX Processor Settings window.
3. Lock or unlock the DMX Processor and OK to apply and close the window.

Important

Make sure that you keep a record of your lock code close to hand if your DMX Processor is located away from the console. The DMX Processor cannot be unlocked without it or a console operator.

Backlight Off Time

Selecting Backlight in the Control Panel opens a screen where you can assign the delay time before the backlight goes off. The Permanent setting keeps the light on continually.
Watchdog

The Watchdog feature automatically restarts the DMX Processor if its software stops running for some reason. Watchdog is on by default, and generally it is best to leave it switched on. However, if you suspect that an DMX Processor is not working correctly, you may want to turn Watchdog off so that you can see any error messages before restarting it:

1. In the Control Panel, select Watchdog.
2. Deselect the Watchdog checkbox, and select OK.

12.3.4 Resetting the DMX Processor

There are two types of reset: soft and hard. Soft Reset resets the DMX Processor so that it re-initialises communication with the network. Hard Reset is equivalent to turning off and on the DMX Processor's mains power. You can do both types of reset from the Control Panel. In addition, you can reset a DMX Processor by right clicking on its entry in the Network window of the console (Setup → Network) and selecting Reset Node.

12.3.5 Checking a DMX Processor's Status

The indicator lights on the front of a DMX Processor 8000 display its status on the network.

<table>
<thead>
<tr>
<th>Light</th>
<th>On</th>
<th>Blinking</th>
<th>Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Connected to a show</td>
<td>Connecting</td>
<td>Not Connected to a show</td>
</tr>
<tr>
<td>DMX Data Net</td>
<td>DMX Data output</td>
<td>2Hz Keep Alive</td>
<td>No DMX sending</td>
</tr>
<tr>
<td>Data</td>
<td>Art-Net output</td>
<td>Art-Net configured, but not connected</td>
<td>Art-Net not configured</td>
</tr>
<tr>
<td>USB</td>
<td>USB Device connected and active</td>
<td>USB Device found but not configured</td>
<td>No USB Device found</td>
</tr>
<tr>
<td>Hog-Net</td>
<td>Link light for Hog-Net connection</td>
<td>Hog-Net activity</td>
<td>Hog-Net not connected</td>
</tr>
<tr>
<td>Fixture Link</td>
<td>Link light for fixture connection</td>
<td>Fixture activity</td>
<td>Fixture not connected</td>
</tr>
<tr>
<td>(Art-Net)</td>
<td>Writing flash memory</td>
<td>Fast: bootloader active</td>
<td>Normal activity</td>
</tr>
<tr>
<td>Write</td>
<td></td>
<td>Slow: updating firmware</td>
<td></td>
</tr>
</tbody>
</table>

12.3.6 Expanding the XLR Outputs of a DMX Processor 8000

The DMX Processor 8000 is always processing 16 universes of DMX. These universes are available via the eight 5-pin XLR outputs on the front of the unit as well as via Art-Net. You can expand the XLR outputs to access the full sixteen universes by using an Expander or Widgets/Super Widgets.
Expanding a DMX Processor 8000 Using an Expander

When you connect a USB Expander to a USB port of a DMX Processor 8000 you will need to configure it to outputs 9-16 of the DMX Processor.

To manually configure Widgets:

2. Select the DMX Processor 8000 in the list by clicking on its net number, and press the Settings button to open the DMX Processor Settings window; see Figure 12.8, “The Widget Outputs pane of the DMX Processor Settings window”.
3. Select the Widget Outputs pane.
4. To configure an expander to output ports 9-16 of a DMX Processor 8000, click on a box associated with a port (9-16) and select the expander from the list of serial numbers that appears. Repeat for all the universes you want to output via the widget.
5. Click OK to confirm the settings. The Expander should now have its DMX Data indicator illuminated.

Expanding a DMX Processor 8000 Using Widgets and Super Widgets

When you connect a USB DMX Widget or Super Widget to a USB port of a DMX Processor 8000 you will need to configure it to the next available output of the DMX Processor.

To manually configure Widgets:

2. Select the DMX Processor 8000 in the list by clicking on its net number, and press the Settings button to open the DMX Processor Settings window; see Figure 12.8, “The Widget Outputs pane of the DMX Processor Settings window”.
3. Select the Widget Outputs pane.
4. To configure an expander to output ports 9-16 of a DMX Processor 8000, click on a box associated with a port (9-16) and select the widget from the list of serial numbers that appears. Super Widget ports will appear with the serial number followed by an output number. Repeat for all the universes you want to output via the Widget.
5. Click OK to confirm the settings. The Expander should now have its Active, DMX OK and TX Mode indicators illuminated.

A single Widget or single output of a Super Widget may only be connected to one port at any one time. If a Widget that is already connected to one port is connected to a second port, it will automatically be disconnected from the first port.
12.4 **Working with Art-Net and E1.3.1 (sACN)**

Art-Net and E1.3.1 (also known as streaming ACN) are two communication protocols supported by the Wholehog OS that allow for DMX512 data to be sent over Ethernet. While each protocol is unique in terms of specification and implementation, they both provide the ability to carry many DMX universes over a single cat 5 Ethernet cable. This section of the manual will help you to understand how to properly configure your Wholehog console to output Art-Net and E1.31. For in depth information about Entertainment Networking, see Wayne Howell’s authoritative book *Rock Solid Ethernet* which contains technical information and guidance on Art-Net and other Ethernet network usage.

The following Wholehog consoles are capable of outputting Art-Net and E1.3.1:

- Road Hog Full Boar

The following DMX Processors are capable of outputting Art-Net and E1.3.1:

- DMX Processor 8000

On the back of each of these nodes is a dedicated Gigabit Ethernet jack labelled Fixture Link that you can use to connect to a network of Art-Net and/or E1.3.1 enabled fixtures, media servers, and DMX converters. You should connect all components of an Art-Net or E1.3.1 network with...
category 5 Ethernet cables and using at least a 10Mb Ethernet switch or router. Gigabit switches are also compatible.

Important

Do *not* combine Hog-Net and Art-Net or E1.3.1(sACN) within the same network. This can produce network errors and unreliable data.

12.4.1 Configuring the Fixture Link

In order to successfully output Art-Net or E1.3.1 from your Road Hog Full Boar or DMX Processor 8000, you must first properly configure the fixture link port's IP address to settings that are appropriate for your network.

To configure a DMX Processor 8000 from its front panel:

- Network → Fixture → Fixture LinkConfig

To configure the Art-Net output of a Fixture Link from the console:

2. Select the DMX Processor 8000 and press Settings.
3. Select the Fixture Link pane of the DMX Processor Settings window;

To configure the Road Hog Full Boar fixture link port from the console:

2. Select the DMX Processor 8000 assigned to net number 1 (or whichever DMX Processor is associated with the local internal DMX Processor 8000 in your show) and press Settings.
3. Select the Fixture Link pane of the DMX Processor Settings window.

From these configurations menus you can configure the Fixture Link's IP address (source address) in one of two ways:

- **Obtain an IP address using DHCP**: select this option when running the Art-Net side of the console on a network that contains a DHCP server such as a DHCP router. When using DHCP, the IP Address, Netmask, and Gateway fields will be grayed out. The information contained with them is not relevant to the DHCP configuration.

Important

If you select Obtain an IP address using DHCP on the console and no DHCP server is present on the fixture link's network then the fixture link adapter will revert to a loopback address of 127.0.0.1.
Use Custom IP Settings: This option allows you to specify the IP address and subnet mask settings of the fixture link adapter. This option is most commonly used on networks where a DHCP server is not present. Once selected you will need to enter the IP Address, Netmask, and Gateway for this device on the network.

12.4.2 Configuring the Art-Net Output

Art-Net output for both the DMX Processor 8000 and Road Hog Full Boar is configurable using the Art-Net Outputs pane of the DMX Processor Settings window.

2. Select the DMX Processor 8000 and press Settings.
3. Select the Art-Net Outputs pane of the DMX Processor Settings window, see Figure 12.9, “Art-Net Outputs pane of the DMX Processor Settings window”.

- **Universe:** this field denotes which DMX universe to configure.
- **Broadcast:** check this box to enable Broadcasting. When enabled, all Art-Net information will be sent to all nodes.
- **UnicastIP:** when the Broadcast field is not checked, enter an IP address of an Art-Net node to Unicast the universe’s data to.
- **Subnet:** click to select the Art-Net subnet (0-15) to transmit this universe’s data on. By default, the subnet will match the Node number of the DMX Processor 8000.
- **Universe:** click to select the Art-Net Universe (0-15) to transmit this universe’s data on.
- **Changes Only:** check this box to transmit only changes to Art-Net data.
- **–/+:** click these keys to expand or reduce the number of Art-Net configurations for a specific DMX universe.

12.4.3 Configuring the E1.3.1(sACN) Output

E1.3.1 Output for both the DMX Processor 8000 and Road Hog Full Boar is configurable using the E1.3.1 pane of the DMX Processor window.

2. Select the DMX Processor 8000 and press Settings.
3. Select the E1.3.1 pane of the DMX Processor Settings window, see Figure 12.10, “E1.3.1 pane of the DMX Processor Settings window”.

- **Universe:** this field denotes which DMX universe to configure.
- **Multicast:** check this box to enable Multicasting. When enabled, all E1.3.1 information will be sent to all nodes.
Figure 12.9. Art-Net Outputs pane of the DMX Processor Settings window

Figure 12.10. E1.3.1 pane of the DMX Processor Settings window
• **Destination IP**: when the Multicast field is not checked, enter an IP address to Unicast E1.3.1 data to.

• **Universe**: click to select the E1.3.1 Universe to transmit this universe’s data on.

• **Changes Only**: check this box to transmit only changes to E1.3.1 data.

E1.3.1 supports two styles of priority. The first is a per-universe priority that defines a single priority for all of the slots within the universe. The second style, per-slot priority, allows a separate priority be be assigned to each individual slot within that universe. Not all E1.3.1 receivers support per-slot priority. On those receivers that support per-slot priority, the per-universe priority will be ignored when per-slot priority is enabled.

• **Priority**: click to the per-universe priority for the E1.3.1 data being sent for that universe of data. Valid settings range from 0 to 200, with higher numbers representing higher priority.

• **Per Slot Priority**: click on the Enable button to enable per-slot priorities for the universe. Click on the Configure button to set the per-slot priority values for individual slots within that universe. Valid settings range from 0 to 200. Higher numbers represent higher priority. A slot priority of 0 indicates that the slot should be ignored.

• **–/+**: click these keys to expand or reduce the number of E1.3.1 configurations for a specific DMX universe.

When E1.3.1 is configured and fixtures are patched, the Net Data LED on the DMX Processor 8000 will illuminate to indicate E1.3.1 Output.

12.4.4 Using a DMX Processor 2000 in Art-Net Mode

A DMX Processor 2000 running version 3.0 or greater software includes a mode that allows you to change the DMX Processor 2000's mode to operate as a standard Art-Net node. When in this mode the display will be inverted and the unit will receive Art-Net input via the Ethernet jack and output four universes of DMX as configured through the DMX Processor 2000's front panel.

To change a DMX Processor 2000 into Art-Net mode:

1. **Main → Control Panel**: navigate to the Control Panel on the DMX Processor 2000 front panel.

2. Select **Mode** from the bottom menu of the Control Panel. You will be prompted to reboot the DMX Processor 2000.

3. Once rebooted the DMX Processor 2000 will accept only Art-Net input (not Hog-Net). Use the front panel to configure the Art-Net input and DMX output; see *Configuring the Fixture Link* (p.89).
To switch the DMX Processor 2000 back to standard mode, change the mode in the Control Panel in the same manner as above.

Important

The DMX Processor 2000 in standard mode is not supported in software versions 3.2.0 and greater.

12.5 Adding Playback Wings

You can increase the number of physical masters by adding Playback and/or Expansion Wings to the console. Playback Bars can be displayed whether a wing is connected or not and can dock at the bottom of the nearest external display to aid identification during playback; see *Figure 12.11, “Docking Playback Bars with wings and external displays”*.

![Figure 12.11. Docking Playback Bars with wings and external displays](image)

To attach a Playback or Expansion Wing:

1. Connect the wing to the console via a free USB port.
2. **Setup → Control Panel → Wings**: open the Wings pane of the Control Panel window (see *Figure 12.12, “The Wings pane of the Control Panel”*).
3. Attach the wing to one of the playback bars by selecting the wing’s unique ID number in the drop down menu for that playback bar.
4. If you have more than one wing, you can identify which is which by pressing the Beacon button for the appropriate playback bar. The LEDs on the wing will flash.

5. Ensure that the playback bar is visible by selecting its Display button.

![The Wings pane of the Control Panel](image)

Figure 12.12. The Wings pane of the Control Panel

12.5.1 Removing Playback Wings

To remove a wing, simply unplug its USB connection. The Playback Bar will continue to be displayed until you hide it (by deselecting its Display button in the Wings pane of the Control Panel); this allows you to continue to program without the wings attached.

If you remove a playback wing while cuelists, scenes or groups are loaded onto the masters, then the console will treat them as if their fader was at full. If you wish to bring the fader level to zero without reconnecting the playback wing, you can do this using the Virtual Faders pane of the User Preferences window (see *Figure 12.13, “The Virtual Faders pane of the User Preferences window”*):

- Setup → Preferences → Virtual Faders
12.6 Expansion Wings

The Wholehog full sized Expansion Wing is a USB device with 40 masters (20 with faders and 20 faderless). LCD screens display Playback Bar information for assigned cuelists, scenes, and groups. The Expansion Wing connects in the same manner as any playback wing; see Adding Playback Wings (p.93).

12.6.1 Configuring Expansion Wings

The Wholehog Expansion Wing’s LCD contrast, backlight, desklight, and LED settings can be adjusted directly on the wing through the Expansion Wing Configuration menu. You can display the Configuration Menu directly using the front panel of the Expansion Wing:

1. Press and hold Pig + Enable on the Expansion Wing. The bottom left LCD will display the Configuration Menu and all the LEDs on the console will illuminate.

2. Adjust the faders below each item to configure the setting.

3. Release Pig + Enable to exit the Configuration Menu.

All Expansion Wing Configuration settings will be retained with the Expansion Wing until they are adjusted again.
12.6.2 **Using the Expansion Wing**

The center section of the Expansion Wing has most of the same keys as the central controls on the console. The top key of this section is labeled *Enable*. This key will turn on and off the central playback controls and Choose keys for the Expansion Wing. This functionality allows use of the individual master Go, Halt/Back, and Flash keys without worry about accidentally overriding the chosen master. The Enable key will illuminate its LED in green when the keys are enabled and red when disabled.

The rest of the keys and faders on the Expansion Wing behave the same as masters on the console. You can configure the virtual fader level of the 20 faderless masters on the top of the Expansion Wing in the Virtual Faders pane of the User Preferences window:

- Setup → Preferences → Virtual Faders

See Figure 12.13, “The Virtual Faders pane of the User Preferences window”.
Section 13: Using the Console

13.1 Basic Concepts

The Wholehog Operating Software has two methods for entering information into the console: the **command line** and the **graphical user interface** (GUI) on the touch screens. Many of the most common operations on the console can be done in more than one way, and as you become familiar with the Wholehog OS you will develop your own preferred methods.

13.1.1 The Graphical User Interface

The Wholehog OS graphical user interface is generally similar to that found on Windows and Macintosh personal computers, with each section of the console (Programmer, Output display and so on) displayed in a window which can be placed anywhere on the touch screens or external displays. The key features of the GUI are:

- You can work with on-screen controls and windows using the touch screen or through a pointer controlled by the built in Trackball, or an external mouse. Left-clicking the mouse is the same as touching the screen and is used for selecting or activating controls, while right-clicking brings up a context-sensitive range of menu options.
- The Soft Keys adjacent to the touch screens provide another method of accessing functions, changing to match whichever **toolbar** is docked along that edge of the screen.
- The graphical environment is highly customisable, giving you complete control of the console and individual window layout. For example, you can rearrange column headers in list windows (e.g. the Cuelist and Programmer windows) to prioritise information that is most pertinent to a specific show or user. Information displayed can also be sorted or filtered. When a user logs out these preferences and settings are stored, and retrieved again on logging in.

13.1.2 Using the Touch Screens

You can use your finger on the touch screens in the same way that you use a mouse; pressing the touch screen is equivalent to a mouse click. You can also use an eraser-tipped pencil or a PDA stylus, which can feel more precise than a finger.

If the touch screens are sluggish or make inaccurate selections, you can fine tune them by adjusting the **Calibration** (p.62).

Tip

You can keep your eraser-tipped pencil, and other useful knick-knacks, under the arm rest at the front of the Wholehog 3 console.
13.1.3 Modifier Keys

Modifier keys may be depressed simultaneously with other keys on the console to extend their functions; they work in a similar way to a Shift or Control key on a personal computer. The Open, Delete, Backspace, Set, Cue and Move keys are sometimes used as modifiers, while the Pig key is always a modifier key; see below.

In the User Manual, the use of modifiers is show by:

- Open + Fixture: hold down the Open key and press the Fixture key.

The Pig Key

Most of the Wholehog OS modifier keys have functions that relate to particular tasks, but the Pig key is a general-purpose modifier, which is context-sensitive. It usually provides more advanced functions such as fine control with the parameter wheels, or a visual cut and paste with the Delete and Copy keys. For example:

1. Pig + I-Wheel: Changes wheel to proportional intensity mode.
2. Pig + Record: Pastes information into the selected location.

Pig Key Commands (p.409) has a full list of commands that use the Pig key.

13.1.4 Undo and Redo

The Undo button is on the Main Toolbar at the bottom of the right touchscreen. Similar to the undo command found in computer applications, the undo function works back through the last commands entered by the user, undoing them, each time the button is pressed. Its application is global, working back through operations in chronological order, and you can go back all the way to the point at which you logged on to the console (generally, this is when you started the console up).

Pressing the Pig button, together with the Undo button, will redo the last undone action. Again, if you have gone back through several undos, you can redo repeatedly until you get back to the most recent action.

What You Can and Can't Undo

The undo and redo feature works on your show data, but generally not on other things. Undo is not available for:

- Changes to the fixture selection in the Programmer. However, the selection may change as a side effect of an undo action.
• Changes to Control Panel settings, and other things not directly related to your programmed show.
• Changes to window positions and views, and the like.

If undo is not available, you will always be asked to confirm important changes before they take place.

13.2 **Working with Windows**

13.2.1 **Opening Windows**

Windows can be opened in four ways:

• **From a Toolbar:** Some windows may have a dedicated button that can be pressed; the Programmer, for example.

• **With the Open Key:** To open a window using console keys, hold down Open and press the window’s associated key or button. For example:
 • Open + Position: opens the Position Directory window.
 • Open + List: opens the Cuelist Directory window.
 • Open + Choose: opens the Cuelist window for the chosen master.

You can also hold down the Open key to gain access to the second level of the main toolbar with buttons for many of the console's windows, such as the Output and Parked windows.

• **From the Command Line:** You can specify the window to be opened using the command line, and then press the Open key. For example:
 • Position 5 Open: opens the editor window for Position Palette 5.
 • Cue 4 / 8 Open: opens the editor window for Cue 8 in the cuelist on Master 4.

• **Double Pressing Keys:** You can also open some windows by double-pressing the appropriate key:
13.2.2 Closing Windows

Windows can be closed using the window's Close button (marked with a cross, at the right hand end of its title bar), by pressing Open + Backspace, or with the Close button on the Window Control Toolbar.

13.2.3 Fronting, Resizing and Moving Windows

You can open as many windows as you wish, but you can only work in one at a time. To work in a window make it the frontmost by clicking or pressing the touch-screen within it, or use the Focus button on the Window Control Toolbar. The window's title bar will become bright blue to show that the window is frontmost; otherwise it is dark blue.

Windows and toolbars can be placed any where within the console's internal touch-screens, or on the (optional) external displays.

You can move and resize windows using keys and buttons, or by using the mouse or trackball.

Using Keys and Buttons

The Window Control Toolbar sits at the top of the right-hand touch screen, and provides a quick and easy way to manipulate windows; see Figure 13.1, “The Window Control Toolbar”. Its functions are also available as key shortcuts.
<table>
<thead>
<tr>
<th>Button Function</th>
<th>Shortcut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page Up, Page Down, Page Left and Page Right scroll the currently selected window. The cursor isn't moved.</td>
<td>Open + [slash]</td>
</tr>
<tr>
<td>Split creates a copy of the selected window. This is helpful when you need to view two parts of the same window at once.</td>
<td>Open + [plus] or [minus]</td>
</tr>
<tr>
<td>Size rotates through a range of set positions and sizes for the selected window within its current screen. The options are full screen, and top, bottom, left and right half and quarter screens. Holding down the Pig key while pressing Size rotates through the options in the reverse order.</td>
<td>Open + @</td>
</tr>
<tr>
<td>Move Screen moves the selected window between touch-screens and external displays.</td>
<td>Open + Full</td>
</tr>
<tr>
<td>Maximise toggles the size of the currently selected window between full screen and its previous size.</td>
<td>Open + Thru</td>
</tr>
<tr>
<td>Focus switches between windows in turn, bringing each to the front.</td>
<td>Open + .</td>
</tr>
<tr>
<td>Lock stops the positions and sizes of all windows being changed by the Trackball or mouse (but not the toolbar buttons). Press again to unlock.</td>
<td>Open + Backspace</td>
</tr>
<tr>
<td>Close closes the frontmost window.</td>
<td></td>
</tr>
</tbody>
</table>

Using the Mouse or Trackball

To move a window, click and hold on the window's top status bar whilst dragging it to its new position. To move a toolbar click and hold its left-hand edge and drag to its new position.

Windows can be resized by clicking and holding on corners until the resize arrow appears. You can then drag the corner to make the window bigger or smaller.

Note that you can only use the mouse or Trackball to move and resize windows if you have unlocked them with the Lock button on the Window Control Toolbar. Keeping the windows locked is useful when using the touch screens, so that you do not accidentally drag or resize windows with their title bars or borders. You can still move and resize windows with the buttons on the toolbar.

13.2.4 Scrolling Window Contents

When a window's contents is too great to fit inside the window, scroll bars appear along the right and bottom edges of the window. You can scroll by pressing or clicking and then dragging on the scroll bar's slider, or by pressing or clicking on the arrows at the ends of the scroll bar.

In addition, you can scroll window contents by holding down the Open key and using the Trackball, I-Wheel or parameter wheels to scroll.
13.2.5 **Desktop Views**

Desktop views allow you to store arrangements of windows for quick access so you do not have to re-open and re-arrange windows to perform specific tasks. For example, you could create a programming view that shows the group, palette and effects directories along with the Programmer window. A playback view could display the cuelist and scene directories, and the Output window.

Desktop views are managed by the View Toolbar at the top of the left-hand touch screen (see Figure 13.2, “The View Toolbar”) and the Views Directory (see Figure 13.3, “The Views Directory”). You can open the Views Directory by holding down the Open key and pressing the View button on the View Toolbar.

Tip

When you create a new show, it automatically contains desktop views for palettes, cuelists, output and the Programmer.

Recording a Desktop View

To record a desktop view using the View Toolbar:

1. Arrange the console's windows as you want them stored in the desktop view.
2. Hold down the Record key and press one of the numbered buttons on the View Toolbar.

Naming a Desktop View

To name a desktop view using the View Toolbar:

1. Press the Set key together with the appropriate button on the View Toolbar. The Quickname window will open.
2. Enter a name, and click on OK.

To name a desktop view using the Views Directory:

2. Select the button for the view you want to name. Make sure that the Guard button is depressed, otherwise you will activate the view instead of just selecting it.
3. Press the Set key. The Quickname window will open.
4. Enter a name, and click on OK.

Tip
You can also assign view names, and add comments to them, in the spreadsheet view of the Views Directory. See Desktop View Options (p.103).

Recalling a Desktop View

You can recall desktop views in two ways:

- **With the View Toolbar:** located at the top of the left hand screen. The views each have their own button, and are loaded in pages of ten onto the toolbar. You can load the next page by pressing the Next button at the right hand end of the toolbar, while Pig + Next loads the previous page.

- **With the Views Directory window:** press the view's button in the Views Directory window. Make sure that the Guard button is not depressed, otherwise you will only select the view, rather than activating it.

Desktop View Options

By default, when you recall one desktop view it replaces the previous one, so that all windows not part of the new view are closed. However, you can set views so that they are additive instead:

2. Select the directory's spreadsheet view; see Working with Directories (p.108).
3. Select the view's cell in the Additive column.
4. Press the Set key to toggle between Yes and No.
Deleting a Desktop View

To delete a desktop view using the View Toolbar:

1. Hold down the Delete key and press the appropriate button on the View Toolbar.
2. Press OK to confirm.

To delete a view using the Views Directory:

2. Check that the directory's Guard button is depressed, so that you can select buttons within the directory without activating them.
3. Press the appropriate directory button and then the Delete key.
4. Click OK to confirm the delete.

Tip
If you prefer not to be asked to confirm the delete action, select Don't Ask Me Again in the confirmation window. You can reenable the confirmation by going to Setup → Preferences → Programming and selecting Confirm before deleting directory items.

13.3 Working with Spreadsheets

Many windows on Wholehog OS show information such as parameter values, timings, and so on in a spreadsheet-style display. These all work in the same way:
• **To resize a column:** Place the cursor over the right-hand edge of the column header. The cursor will change to a double-ended arrow. Click and drag to resize the column.

![Column header](image)

• **To move a column:** Click and drag on the column header.

• **To hide a column:** Right-click on the column header, and choose *Hide*.

• **To show a hidden column:** Right-click on a column header, and choose the name of the column from the menu.

• **To sort the spreadsheet:** Right-click on a column header and select *Sort* to sort the spreadsheet by the values in that column. Select *Sort* again to reverse the direction of the sort. You can also right-click on a column header and select *Sub-sort* to assign a second level of sorting. For example, if you sort the Fixture window by fixture type, and sub-sort by Patch, then all the Desk Channels will be shown grouped together, in the order of their patch address.

• **To select all the cells in a column:** Double-click on the column header at the top of the spreadsheet.

• **To select a cell:** Click or press in the cell. You can use the cursor keys below the Trackball to change which cell is selected. If the cell is editable, it will have a red border.

• **To select a range of cells:** You can click or press and then drag across a range of cells to select them all. Alternatively, you can click in the first cell, press and hold Thru, and click in the last cell; this is useful if you want to select a large range and need to scroll the window.

• **To edit the contents of cells:** Click or press in the cell and press the *Set* key, or double-click in the cell. Type in the new value, and press *Enter*. This works for both a single selected cell and a range. Cells that are editable have a red border when selected. Cells labeled Colour in cuelists and scenes will open the colour selection dialog to allow you to colour code the cell.

13.3.1 Compact Mode

In editor windows such as the Programmer, you can use compact mode to save space and get more information onto the screen without having to scroll; see *Figure 13.5, “A spreadsheet with*
and without Compact Mode”. In compact mode, fixtures only have columns for the actual parameters that they have, rather than for all the parameters of any fixture in the editor. The console uses the display space more efficiently by having multiple columns for fixture types with few parameters, such as desk channels.

You can toggle compact mode on and off with the Compact button in the window’s toolbar.

![Figure 13.5. A spreadsheet with and without Compact Mode](image)

Note that you cannot sort a spreadsheet that is in compact mode.

13.3.2 Aggregation

In windows such as the Programmer, it is often useful to keep fixtures of the same type together; this is known as ‘aggregation’. The spreadsheet effectively becomes a list of fixtures in fixture type order, with headings in the list separating each fixture type; see Figure 13.6, “A Spreadsheet with Aggregation Turned On”.

To use aggregation:

1. Make sure the spreadsheet is sorted by Fixture Type: right click on the Type column and select Sort. If the Type column isn't visible, right click on any column heading and select Type.
2. Press F to open the Configuration window.
3. Select Enable Aggregation.
4. Click on OK.

Note that aggregation is always on if the spreadsheet is in compact mode; see Compact Mode (p.105).

Tip

Aggregation is turned on by default in all editors, such as the Programmer.
Collapsing Aggregated Sections

You can collapse aggregated sections to hide all the rows in that section; see Figure 13.7, “An Aggregated Spreadsheet With Collapsed Rows”. To collapse an aggregate section, right click the black heading bar and select Collapse.

To expand the aggregation section again, right click the section's black heading bar and select Expand.

![Figure 13.6. A Spreadsheet with Aggregation Turned On](image1.png)

Figure 13.7. An Aggregated Spreadsheet With Collapsed Rows

Priority of Aggregated Sections

You can change the position of an aggregation section in the list by altering its priority. Raising a section's priority will make it appear nearer the top of the spreadsheet.

To move an aggregate row up or down in priority, right click the section's black header bar and then select Raise Priority or Lower Priority.

Jumping Between Aggregated Sections

You can quickly bring aggregated sections into view using the Jump Toolbar located on the upper right of a spreadsheet window, see Figure 13.8, “The Jump Toolbar”. This has a button for each aggregation section; clicking a button will scroll the list to bring the section into view.
To enable the jump toolbar:

1. Press \(\) to open the Configuration window.
2. Select Enable Jump Toolbar.
3. Click on Apply.

Tip

The jump toolbar is turned on by default in all editors, such as the Programmer.

13.3.3 Cut, Copy and Paste

You can copy and paste the contents of selected cells:

- Right-click, and select Copy or Paste from the contextual menu.

Or:

- Pig + Copy : copy.
- Pig + Record : paste.

13.4 Working with Directories

Directory windows give you quick access to groups, palettes, scenes, cuelists and so on, and they all work in essentially the same way.
Figure 13.9, “A Typical Directory” shows a typical directory. The main part of the window is filled with large buttons, used to access the group, palette, scene, cuelist or page, as well as displaying their names and some other key information:

<table>
<thead>
<tr>
<th>Display</th>
<th>Applies To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>. . C .</td>
<td>Palettes</td>
<td>Shows the parameter types recorded in the palette. I = intensity, P = position, C = colour, B = beam, E = effect, T = time. See Recording with Specified Masking (p.194).</td>
</tr>
<tr>
<td>🔄️</td>
<td>Palettes</td>
<td>The palette is a direct palette. See Direct Palettes (p.197).</td>
</tr>
<tr>
<td>🔄️</td>
<td>Palettes</td>
<td>The palette contains references to other palettes. See Reference Palettes (p.196).</td>
</tr>
<tr>
<td>🔄️</td>
<td>Palettes</td>
<td>The palette is the Highlight Palette. See Customising Highlight (p.203).</td>
</tr>
<tr>
<td>🔄️</td>
<td>Palettes</td>
<td>The palette is the Lowlight Palette. See Customising Highlight (p.203).</td>
</tr>
<tr>
<td>🔄️</td>
<td>Cuelists</td>
<td>The cuelist is a chase. See Using a Cuelist as a Chase (p.287).</td>
</tr>
<tr>
<td>🔄️</td>
<td>Cuelists</td>
<td>The cuelist has timecode active. See Working with Audio, MIDI and Timecode (p.319).</td>
</tr>
<tr>
<td>🔄️</td>
<td>Cuelists</td>
<td>The cuelist has clock triggers that are enabled. See Clock Triggers (p.240).</td>
</tr>
<tr>
<td>🔄️</td>
<td>Pages</td>
<td>The page is the template page. See The Template Page (p.309).</td>
</tr>
<tr>
<td>🔄️</td>
<td>Pages</td>
<td>The page has a Restore Activity macro defined. See Restoring Activity When Changing Pages (p.306).</td>
</tr>
</tbody>
</table>

You can rename the selected button (with the red border) by pressing the Set key. You can also hold Set and press any button to rename it.

At the top of the window there are four buttons common to all directories:
Switches to a spreadsheet view, allowing you to edit attributes of the items in the directory such as their names. See *Working with Spreadsheets (p.104)* and *Figure 13.10, “A Typical Directory in Spreadsheet View”*. Reports. This allows you to print the contents of the window.

Configure. This allows you to control various aspects of how the directory window displays information.

Guard When this is depressed, pressing the directory’s buttons does not activate them. Instead it selects the item and inserts it in the command line.

When you create or copy a directory item, the console automatically generates a name for the new item. For example, if you have two position palettes and then create a third, the new one will be recorded into location 3 in the directory and named ‘Position 3’. If you then copy this position palette, the copy will be recorded into location 4 in the directory and named ‘Copy of Position 3’.

You can customise how the console automatically generates these names in the Default Naming pane of the User Preferences window; see *Figure 13.11, “The Default Naming pane of the User Preferences window”*. To open the Default Naming pane:

- Setup → Preferences → Default Naming

To customise the generated labels:

1. Click or press on the text box for the required type of directory (group, intensity, position, and so on). Labels for when the new directory item is created by recording or by copying are handled in separate text boxes.

2. Set, *new label text*, Enter: type in the label you want.
3. Alternatively, click or press on the arrow at the right hand end of the text box to get a list of useful labels. Click on the one you want.

You can use special tags to have the console insert text into the name for you, according to the directory name and the location in the directory:

- \&d: the directory name
- \&D: the directory name (dynamic)
- \&n: the directory number
- \&N: the directory number (dynamic)
- \&o: the original text. This is used when a directory item is copied; the original text is the name of the item that has been copied.

Lowercase tags are resolved once only, when the name is applied, while uppercase tags remain unresolved until the name is displayed (known as ‘dynamic’). So, pressing Set and entering the name of colour palette 3 as ‘\&d \&n’ will assign the name to be ‘Colour 3’. If you assign the name to be ‘\&D \&N’, the name will also be assigned to ‘Colour 3’. The difference is that moving this palette to position 4 will automatically correct the name to ‘Colour 4’.

13.4.2 Colour Coding Directory Items

Each directory window allows for unique colour coding of each button within the directory. The default colour for new directory items is standard grey. When you copy a directory item, the console will automatically copy the directory item’s custom colour as well see Figure 13.12, “Directory Item Colour”.

To customise a directory item in button view:
1. Using the mouse, right click on the directory button to open the right click menu.

2. Click on one of the 15 options shown in Figure 13.13, “The Preset Colour Options” to assign the directory item this colour.

3. Alternatively, click on Choose to select a custom colour from a colour wheel or click None to select the standard grey colour. Click on Auto to have palettes in the Colour directory automatically determine the button color based upon the dominate colour value recorded in the palette.

To customise a directory item in spreadsheet view:

1. Select the Colour cell and press Set to open the colour selection menu.

2. Click on one of the 15 preset colours to assign the directory item this colour.

3. Alternatively, click on Choose to select a custom colour from a colour wheel or click None to select the standard grey colour. Click on Auto to have palettes in the Colour directory automatically determine the button color based upon the dominate colour value recorded in the palette.

Tip

You can select multiple buttons or cells by clicking and dragging to assign the same colour to multiple items.
13.5 Working with Editors

Editors are windows where you can view and assign the parameter values of fixtures. There are editors for cues, scenes and palettes, and the Programmer is also an editor. Editing parameter values works in essentially the same way for all of them; see Selecting Fixtures, Modifying Parameters (p.155).

You can open an editor window for any cue, scene or palette by holding down the Open key and selecting it from its directory window. Alternatively, you can use the command line:

- **Cue 1 Open**: opens an editor for Cue 1 and makes it editable.

13.5.1 Editor Window Controls

The main part of an editor window shows the fixture parameter values in a spreadsheet view, with each row representing a single fixture; see Working with Spreadsheets (p.104).

At the top of the window there are three toolbars with buttons: the Editor Values Toolbar toolbar, the Editor Toolbar, and the Jump Toolbar. The following sections describe the buttons that are...
common across all editors; some editors have additional buttons that are specific to that type of editor, and these are described in the relevant part of the manual.

The Editor Values Toolbar

The Editor Values Toolbar has buttons for: Value, Fade, Delay, Path, Size, Rate, Offset, Length, Table, and N Shot. Use these buttons to display the different kinds of information associated with the fixture's parameters; see Working with Fade Timings (p.228).

The Editor Toolbar

The Editor Toolbar has the following buttons:

<table>
<thead>
<tr>
<th>Button</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit</td>
<td>Press this to make the contents of the editor editable, rather than just to view it. Instructions given to the command line, or using the parameter wheels and I-Wheel, are directed to the editable editor.</td>
</tr>
<tr>
<td>Show State</td>
<td>In cue editors, press this to see all the parameters that will appear on stage, including those that have tracked through from earlier cues in the cuelist. With Show State deselected, only the hard values actually recorded in the cue are displayed.</td>
</tr>
<tr>
<td>Show Palettes</td>
<td>Press Show Palettes to see the palette name, rather than the parameter value; see Working with Palettes (p.187).</td>
</tr>
<tr>
<td>Fade Changes</td>
<td>Press this to have parameter values changed in this editor fade rather than snap onto stage; see Fade Changes (p.206).</td>
</tr>
<tr>
<td>Compact</td>
<td>Press this to toggle compact mode on and off. Compact mode fits more information into the editor without having to scroll. However, the column for a particular parameter won't necessarily be aligned across different fixture types, so sorting is not possible.</td>
</tr>
<tr>
<td>Reports</td>
<td>Reports. This allows you to print the contents of the window.</td>
</tr>
<tr>
<td>Configure</td>
<td>Configure. This allows you to control various aspects of how the editor window displays information.</td>
</tr>
</tbody>
</table>

The Jump Toolbar

The Jump Toolbar has a button for each type of fixture currently in the editor, allowing you to quickly jump to the parameter values for that type of fixture. The Jump Toolbar only appears if aggregation is turned on; see Aggregation (p.106).

13.5.2 Changing Parameter Values in the Editor

To make changes to the contents of an editor, you need to have its Edit button selected. You can have up to eight editors open, but only one can be editable at a time, and the parameter wheels, I-Wheel and command line all operate on the contents of the currently editable editor. If you have several editors open at once, you can use the Edit button to determine which one you are controlling (even if it is not the frontmost window) or to ‘lock’ the editor to prevent accidental changes.
When you open an editor, all the fixtures within the editor are automatically selected. This aids quick editing of cues or palettes. You can also deselect the Select All on active editor option under the Misc tab of the preference window so that editors can be opened and closed without changing fixture selection.

After you have finished editing a cue, scene or palette, press the Update key to apply changes. Until you do this, changes won’t show up if you run the cue or scene, or use the palette. The exception to this is when you are working in the Programmer, when the Update key will perform the Auto Update function; see Auto Update (p.204).

If you hold down the Update key, the Update Toolbar will appear. This allows you to select which parameter types are recorded, whether changes should track forwards, and whether references should be allowed when recording palettes. See Stopping Values from Tracking Forward (p.219) and Reference Palettes (p.196).

If you close the editor without updating, you will be asked whether you want to save or discard the changes, or cancel the closing of the editor.

The name of the current editable editor is shown in the Command Line Toolbar; see Figure 13.15, “The Command Line”. By default, it is the Programmer. The name of the item being edited appears in the title bar of the editor window.

13.6 Using the Command Line

Wholehog OS has two fundamental approaches to programming: one uses an on-screen, graphical approach, while the other uses a command line. The graphical approach is easy to learn because you can see the available options on screen, but tends to be slower. The command line is harder to learn because you have to learn the commands, but it is faster once you know it and it allows you to do complex operations in a single action. Often, you can combine elements of the two approaches.

The commands that you enter appear in the Command Line Toolbar at the bottom of the right-hand touch-screen; see Figure 13.15, “The Command Line”. You build up a command as a series of keystrokes, and the command is acted on when you press Enter. You can use the Backspace key to delete each part of the command in turn if you make a mistake typing it in. A double-press of the Backspace key will clear the whole command line.

The command is sent to the currently editable editor; press Edit in an editor window to make it the editable editor.
13.6.1 **Command Line Syntax**

The commands for editing show data all use a common syntax structure. The key to mastering the command line is realising that the syntax is the same for different commands, and different types of show data.

The basic structure is: Source, Mask, Command, Options, Destination.

- **Source**: The source is the object within the show that you want to take data from. It might be a palette, scene, cue, or the editable editor. With most commands the source object is not modified.

- **Mask**: The Mask is a filter for when you only want some of the data from that object. There are two types of mask: a fixture mask specifies only data for certain fixtures (for example Cyberlight 1); a kind mask specifies only data for certain kinds (for example Colour, Beam). If no mask is specified then the default mask for the command and destination is used; this will often be the entire object.

- **Command**: The Command is the operation you want to perform. Commands include Copy, Record, Delete, Move, Merge, Knockout. Some of these only need a source to be specified, others only need a destination, but they all have the same syntactical form.

- **Options**: The behaviour of some commands (for example Record) can be altered with options. These usually appear on a popup toolbar once the command key is pressed.

- **Destination**: The destination is the object that will be affected by the command. Again it might be a palette, cue, scene or the editable editor. If the destination already exists, and the action to take is unclear, then you will be asked what the console should do.

Some examples of the command line syntax are shown below. Note that the final press of the Enter key required to tell the console to implement the command has been omitted for clarity.
The important thing to understand is that the command line follows a standard syntax, with the various parts in a particular order. Knowing this, you will be able to extend the many examples of command line syntax in this manual to do anything that you want.

Tip

The text of the command line turns red if your syntax is not valid.

13.6.2 The Status Bar

To the right of the command line is the Status Bar; see Figure 13.16, “The Status Bar”.

Figure 13.16. The Status Bar

The Status Bar gives you the following information about the status of the console, from left to right:
Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Trackball mode</td>
<td>--- (pointer)</td>
</tr>
<tr>
<td></td>
<td>POS (position)</td>
</tr>
<tr>
<td></td>
<td>POS, ortho (ortho mode)</td>
</tr>
<tr>
<td>The name of the current page</td>
<td>Page 1</td>
</tr>
<tr>
<td>The current editor</td>
<td>Programmer</td>
</tr>
<tr>
<td>The currently chosen master</td>
<td>Master 4</td>
</tr>
<tr>
<td>The network status</td>
<td>The network is working normally.</td>
</tr>
<tr>
<td></td>
<td>Consoles are syncing show data.</td>
</tr>
<tr>
<td></td>
<td>There is a problem with the network.</td>
</tr>
<tr>
<td>The current time in hours and minutes.</td>
<td>16:28</td>
</tr>
</tbody>
</table>

13.7 Starting Up and Shutting Down

13.7.1 Starting Up

![Figure 13.17. The Start window](image-url)
When you turn the console on the Start window will appear; see Figure 13.17, “The Start window”. You can choose to Launch New Show, Launch Existing Show, or Connect to Show.

Launch New Show

Selecting this will launch a new show screen and you will be asked to enter the following information:

- **A storage location**: Choose the location on the console's hard drive where you would like to store the show. You cannot choose the Zip drive or the CD-ROM as a storage location.
- **The show name**: This can be as long as you like. If you do not have a keyboard attached, press Set to open an on-screen keyboard.
- **A fixture library**: Choose the library to use as the fixture library. The library contains information about different types of fixtures that Wholehog OS needs. Several library versions are available for compatibility reasons - it is best always to select the newest library when starting a new show.

Tip

Rarely used fixture types are stored in the ‘Uncommon’ fixture or ‘Custom’ fixture libraries. If you are using an older or specialized fixture type you can merge them into your show from either of these fixtures libraries stored on the console. To avoid problems, merge only the desired fixtures and not the entire library.

Launch Existing Show

Use the drop down menu to choose from a list of recently used shows and then press Launch Existing Show. Alternatively, use the Browse button to select from all available shows, including those stored on USB, Zip, or CD-ROM drive.

Connect to Show

To connect to a show already running on the network select it in the Connect to Show section.

If no show is displayed, and you are sure that a show is running on the network, this could be because:

- your console is on the wrong network port. Click on the Settings button and adjust the **port number**.
- your console has the wrong network settings. Press the Control Panel button on the Startup Toolbar at the bottom of the screen, and adjust the settings in the Network pane; see Building a Hog-Net Network (p.71).

13.7.2 Automatically Launching a Show

You can assign Wholehog OS to automatically launch a show at startup:
1. Setup → Control Panel → Auto Launch: see Figure 13.18, “The Auto Launch pane of the Control Panel”.

2. Select Enable Auto Launch.

3. Choose a show file to launch.

4. Assign a delay time before the chosen show is automatically launched.

![Figure 13.18. The Auto Launch pane of the Control Panel](image)

At startup, a window will tell you that the show will be launched automatically after the assigned delay; see Figure 13.19, “The Auto Launch window”. Click Launch Now to ignore the remaining delay and launch the show immediately. Click Cancel to return to the Start window. If you specified a delay of 0 seconds, the delay window will not be displayed.

![Figure 13.19. The Auto Launch window](image)

13.7.3 Startup Macros

You can assign a macro that is executed once the show has been launched. You can use this to automate a variety of tasks such as recalling a view, changing pages, starting cuelist playback on masters, and so on. The startup macro is assigned in the Misc pane of the User Preferences window:

- Setup → Preferences → Misc
For details of the macro syntax, see *Automating the Console Using Macros* (p.335).

13.7.4 Restarting and Shutting Down

To shut down, select Setup → Quit. The Quit button is on the right hand end of the Setup Toolbar. The Shut Down dialog will open (see Figure 13.20, “The Shut Down Dialog”), with the following options:

- **Shut Down**: shutting down will turn the Wholehog console off completely.
- **Restart Console**: restarting is like shutting the console down and turning it on again, and will take you to the Start window.
- **Log Off**: logging off will close your current desktop, Programmer and output screens, as well as closing the current show file. The console remains powered up and running, and returns to the Start window.
- **Cancel**: cancels the quit command.

In all cases your show data is automatically saved to disk.

![Shut Down Wholehog Session](image)

Figure 13.20. The Shut Down Dialog

13.8 Managing Show Data

Your show data is stored on the internal hard disk in the location that you chose when creating the show. Show files and folders are located in the Shows folder, and libraries in the Libraries folder.

The console saves changes to the disk as they are made, and in the event of a power failure of a Wholehog 3 console, the battery backup will ensure that all saves are completed before shut down.
You can use the Show Manager window (see Figure 13.21, “The Show Manager Window”) to see the details of the shows in the console and backup, move, copy and delete them. To open the Show Manager:

- Setup → Shows

![The Show Manager Window](image)

Figure 13.21. The Show Manager Window

13.8.1 Starting a New Show and Changing the Current Show

To change the current show or start a new one, log out and log in again:

1. Setup → Quit
2. Select Log Off.
3. In the Start window, either launch a new show or browse to launch an existing one; see Starting Up and Shutting Down (p. 118).

13.8.2 Working With Show Files

Browsing Files

You can browse and organise show files and libraries in the File Browser pane of the Show Manager window; see Figure 13.21, “The Show Manager Window”. On the left is a list of the main console folders and the console's drives. Clicking on one of these will display its contents in the right hand list.

The browser shows the name, description, and creation date and time of the file, as well as the version number of the library used to create the show in parentheses. If the show is marked as modified, then the library has been altered through a library merge.

Moving, Copying, Deleting and Renaming Shows

To move, copy or delete shows, use the File Browser pane of the Show Manager window.
To move a show file:

- Drag and drop files to destinations in the left hand folder list. Generally, you will find dragging with the mouse or Trackball much easier than using the touchscreen.

To copy a show file:

- Drag and drop files while holding down the Pig key (or the Control key on an external keyboard).

To delete a show file:

- Right-click on the show file and select Delete from the contextual menu. You will be asked to confirm the action.

To rename a show file:

- Right-click on the show file and select Rename from the contextual menu. Type in the new name and press Enter.

Tip
You can also copy and paste files by right-clicking on them and selecting Copy or Paste from the contextual menu.

Creating New Folders

You can create sub-folders in the Shows and Libraries folders to help organise your work:

1. Click on the folder you want to make a new folder in.
2. Click on the button.
3. Enter a name for the folder and press Enter.

Note that you cannot create folders on a CD-ROM.

Tip
You can also create a new folder inside an existing one by right clicking on it and using the contextual menu.

Ejecting Disks

You cannot eject a disk in the console's Zip and CD-ROM drives if they are in use. Before ejecting, make sure that you don't have the disks folder selected in the File Browser. If a disk will not eject, check that you are not browsing its contents elsewhere, and that the console is not currently accessing it.
13.8.3 Backing Up

It is good practice to backup your show regularly by saving a backup copy of your show on the console's hard disk, or on a USB, CD-ROM, or Zip disk.

Wholehog OS backup files are in a different format to normal show files. A show file actually consists of many folders and files, although usually you will not be aware of this as the console makes it appear as a single file. A backup file is a single compressed file that contains all the files and folders that make up the show data, and you should always use a backup file to transfer shows from one console to another. The console's backup function creates this type of single compressed file.

Tip
You should backup your show to external media regularly, as well as to the console's internal hard drive, so that not all of your backups are in the same place.

Use the following steps to make a backup copy

Use the Current Show pane of the Show Manager window to store a copy of your current show to another location on the hard disk

1. Setup → Shows → Current Show
2. Click Backup.
3. Browse to a location on the hard drive or an external drive to save the backup file.
4. Click OK. A copy of your show will be saved with ‘_bck’ appended to its file name.

To back up to CD-ROM, save the backup file to the console's hard disk first, and then copy it to the CD; see Copying Files to a CD-ROM (p.124).

13.8.4 Copying Files to a CD-ROM

To copy shows onto a recordable CD as an archive or for transfer to another console:

1. Setup → Shows → CD Burning : see Figure 13.22, “The CD Burning pane of the Show Manager window”.
2. Select a file to be copied in the left-hand list, and click the Add to CD button to move it to the right-hand list. You may be asked to back up the show before adding it to the list; click OK to agree to this.
3. Repeat for all the files you want to copy to the CD.
4. Insert a recordable CD into the CD-ROM drive, located under the console's front wrist rest.
5. Press the Burn button, and then the Start Burn button in the CD Burning window. The window will show the progress of the writing operation.
Figure 13.22. The CD Burning pane of the Show Manager window

Tip
You can use drag and drop to move files to the CD Master list. Note that files will always be copied, not moved.

13.8.5 Saving and Loading Your Preferences

Your settings within the User Preferences window are stored as part of the show file. This means that the settings are applied whenever the show file is launched, even if it is on another console.

You can save your preference settings as a separate file, so that you can later load them into any show that you work on. To save your preferences:

1. **Setup → Preferences**: open the User Preferences window.
2. Click on the Export button, and select a location to save the preferences file to. You can save directly to the console's hard disk, or a USB or Zip disk. You can also save to the console's hard disk for later copying to CD-ROM; see *Copying Files to a CD-ROM* (p.124).

To load your preferences into the current show:

1. **Setup → Preferences**: open the User Preferences window.
2. Click on the Import button, browse to the location of your preferences files, and select a preferences file to import.

Note that when importing, several custom preference files are stored on the console by default. These files contain custom wheelsets for many different fixture types.
13.9 **Merging Shows**

Show merging allows you to take fixture types, fixtures, and the programming associated with fixtures, from another show and merge them into your show. The show currently loaded into the console is known as the *current* show, and the show you are taking data from is called the *source* show.

You can also merge a fixture library into the current show; this is useful if you want to use an updated fixture library to take advantage of enhanced or more recent fixture definitions. If you do this, you will only be able to merge fixture types, since there are no fixtures or programming in a library file.

Important

You cannot merge information between libraries, or shows created with libraries, with different library version numbers. For example, a show created with a v2 library cannot be merged with a show created with a v3 or v4 library.

To select a show or fixture to merge:

1. **Setup → Shows → Current Show** : open the Current Show pane of the Show Manager.
2. **Press Merge** to be guided through the merge process. The Merge Show window will open; see Figure 13.23, *"The Source Location page of the Merge Show window"*.
3. Choose a source show file or library. Note that if you have chosen a backup (.bck or .shw) file, it may take a few moments for the console to recognise it, as it has to uncompress the file to read its contents.
4. Once you have chosen a show or library, you will be offered the possible merge options: Merging Fixture Types, Merging Fixtures, and Merging Programming.
13.9.1 Merging Fixture Types

Once you have selected a show or library, Wholehog OS compares the libraries and creates a list of types which have changed; see Figure 13.24, “The Type Merge page of the Merge Show window”.

Tip
If you want the latest fixture types, you can download a library file from the Flying Pig Systems website (www.flyingpig.com) and load it into the console.
An expanding tree shows those types, and their differences:

- **Newer**: the fixture type in the source library is a newer revision.
- **Older**: the type in the source library is an older revision.
- **Not In Show**: the type is in the source library, but not the current library.

If you want to see all fixture types, rather than just the ones that have changed, press Show Same Revision.

Select the fixture types to merge by clicking on their check boxes. The Deselect All button allows you to clear the current selection and start again. If you are merging a library, press Finish to start the merge. Otherwise, press Next to continue to merging the show data.

13.9.2 Merging Fixtures

After choosing to merge fixture types, you can merge the fixtures used in the two shows; see Figure 13.25, “The Fixture Merge page of the Merge Show window”. If you choose not to merge fixtures, you will not be able to merge any programming.
There are two options for merging fixtures:

Append: appending fixtures will add a copy of all of the fixtures from the source show into the current show. Any programming that is merged from the source show will use the appended fixtures and all programming in the current show will continue to use the same fixtures as before.

Replace: replacing fixtures will match fixtures from the source show with fixtures in the current show if they have the same type and user number. If a match is made, the fixture in the current show is replaced with the one in the source show and all programming in the source and current show that used that fixture will use the merged fixture. If no match is made, the source fixture is appended to the current show as above.

Important

If you merge fixtures and then merge programming, because both the source show and the current show are using the same fixture, any programming from the source show using that fixture will overwrite the programming in the current show.

13.9.3 Merging Programming

After merging fixtures, you can merge the programming (groups, palettes, cuelists and cues, scenes, pages and views) from the source show; see Figure 13.26, “The Group Merge page of the Merge Show window”.

![Figure 13.25. The Fixture Merge page of the Merge Show window](image-url)
When merging groups, palettes, cuelists and cues, scenes and views the following merge methods are available from the drop down menu in the Merge field:

- **Append**: adds all of the programming from the source show to the current show.
- **Append Different**: if programming with the same name cannot be found in the current show, the programming from the source show is appended.
- **Merge By Name**: if programming with the same name is found in the current show, merge the source programming into the current show. If there are any clashes, the source programming will overwrite the current programming. This option is not available when merging views.
- **Merge By Number**: is the same as Merge By Name, but the matching is done by number. This option is not available when merging views.
- **Replace**: if programming with the same number is found in the current show, it is overwritten with programming from the source show. If no match is found, the source programming is appended to the current show.
After selecting the merge method, you can select which groups, palettes, cuelists, and cues, scenes, and views to merge by clicking on each item displayed in the window. Items highlighted in blue are selected for merging.

Tip
You cannot replace palettes in the current show because you could replace a palette with one that doesn't contain programming for fixture parameters that other programming expects it to have.

13.9.4 Dependencies
In order to merge certain parts of a show, you must have chosen to merge other parts:

- To merge groups, you must have merged fixtures.
- To merge palettes, you must have merged fixtures.
- To merge cuelists and cues, you must have merged palettes.
- To merge scenes, you must have merged palettes.
- To merge pages, you must have merged cuelists and scenes.

13.9.5 Using Merging

Example 1: You have programmed your show on two separate consoles (perhaps one controlling moving fixtures and one controlling conventionals) and you want to merge the shows for playback on one console. Each show file contains identical palette and cuelist structures, but they just control their own fixtures.

In this case, Append fixtures and Merge By Name for all programming.

Example 2: You have two shows programmed using the same rig, which you now want to merge. Each show contains exactly the same fixtures.

In this case, Replace fixtures, and Append Different all of the programming (assuming all of the programming has unique names).

Example 3: You need to add a fixture that is not in the current library.

In this case, obtain a new library file from Flying Pig Systems and merge the new fixture.
Section 14: Adding and Configuring Fixtures

14.1 Adding and Removing Fixtures

You add, remove, duplicate and change the type of fixtures from the Fixture window; see Figure 14.1, “The Fixture Schedule window”. To open the Fixture window:

- Setup → Patch

Or:

- Open + Fixture

Figure 14.1. The Fixture Schedule window

14.1.1 Adding a Fixture to the Show

You add fixtures using the Fixture Schedule dialog within the Fixture window; see Figure 14.2, “The Fixture Schedule window”. The Number column shows the number of fixtures of that type currently in the show.
To add a fixture:

1. Setup → Patch: open the Fixture window.
2. Press the Fixture Schedule button in the top left hand corner of the Fixture window. The Fixture Schedule window will open with a list of fixture personalities in the current Fixture Library; see Figure 14.2, “The Fixture Schedule window”. Each fixture is listed under its manufacturer, while Desk Channels (conventional intensity-only fixtures such as parcans) and Scroller-Dimmers are listed under Generic.
3. You can limit the display to only the fixtures currently in use by clicking on the Limit to fixture in use button at the top of the Fixture window.
4. Alternatively, type a fixture name into the Search fixture name field at the top of the window; see Figure 14.3, “The Fixture Schedule Search Feature”.

Figure 14.2. The Fixture Schedule window
5. Use the mouse to navigate to and select the fixture type you want to add. Alternatively, use the four Cursor keys (below the Trackball) to navigate to the fixture type that you want to add. The Up and Down keys scroll through the list, while the Left and Right keys open and close sub-lists.

6. Set, [number of fixtures required]. Enter: assign the quantity of that fixture type in the show.

7. Repeat for all fixture types required. You can add more later.

8. When you have finished select OK.

14.1.2 Replicating Fixtures

You can expand your show to accommodate a larger rig using the Replicate Fixture function. This will create copies of fixtures, including all their programming. To replicate fixtures:

1. Setup → Patch: open the Fixture window.

2. Select one or more fixtures in the Fixture window by clicking on its numbered button in the left hand column.

3. Press Replicate Fixture, located in the toolbar at the top of the Fixture window.

Figure 14.4, “A Studio Color 575 in the Fixture window, before and after replicating” shows the contents of the Fixture window before and after replicating fixtures.

The new fixtures are an exact copy of the originals, and will be added to every palette, cue and scene that contains programming for the original fixture. The comment cell shows you which fixture it is a copy of. New fixtures are given User Numbers that follow on sequentially from the original fixtures' numbers, but they are not patched or added to any groups. An asterisk will appear next to User Numbers that may now conflict with existing ones.

Figure 14.4. A Studio Color 575 in the Fixture window, before and after replicating

14.1.3 Changing the Fixture Type

It is sometimes useful to change the type of a fixture, for example because of production changes where one fixture of one type is replaced by another of a different type, or because the rig has been changed, perhaps by adding a scroller to a desk channel fixture such as a Par.

To change the fixture type:

1. Setup → Patch
2. Select the fixtures you want to change by clicking on the numbered button in the left-hand column.

3. Press the Change Type button and select the new fixture type from the list.

4. Wholehog OS cannot change a fixture's type while it is patched. You will be asked if you want to unpatch any patched fixtures; don't forget to repatch them afterwards.

Figure 14.5, “Changed Fixture Type” shows the contents of the Fixture window before and after changing the fixture type.

Important

Changing a fixture's type may cause ambiguities in any programming that has already taken place. Whilst Wholehog OS translates all real world figure data, including colour and beam, between fixture functions, it...
cannot match the performance of a higher specification unit with a greater number of functions to that of a lower specification unit.

Figure 14.5. Changed Fixture Type

14.1.4 Removing a Fixture from the Show

To remove a fixture:

1. **Setup → Patch**: open the Fixture window.
2. **Fixture 1 Remove**: Select the fixture(s) you want to remove, and press Remove.
3. You will be asked to confirm. Select OK.

Important

If you remove a fixture, all of its associated programming in groups, palettes, cues and so on will be removed from the show. To disable a fixture while retaining its programming, unpatch it; see *Unpatching Fixtures* (p.147).

14.1.5 Creating Palettes and Groups Automatically

Wholehog OS can create groups and palettes automatically, based on the fixtures in your show. This rapidly gives you a set of ‘building blocks’ to start programming with. To use the Auto Palettes function:

1. **Setup → Patch**: open the Fixture window.
2. Click on the Auto Palettes button (located in the toolbar at the top of the Fixture window) and select from the options in the Auto Palettes window; see *Figure 14.6, “The Auto Palettes window”*.
3. Click on Generate.
You can choose to have the console automatically make:

- **Groups**: If the Make Groups button is depressed, the console will make groups for each fixture type. You can specify the repeat multiple for the groups to be created. For example, with a value of 3 Group 1 will contain fixtures 1, 4, 7, 10…, Group 2 fixtures 2, 5, 8, 11…, Group 3 fixtures 3, 6, 9, 12…

- **Intensity Palettes**: If the Make Intensity Palettes button is depressed, the console will make intensity palettes.

- **Position Palettes**: If the Make Position Palettes button is depressed, the console will make position palettes.

- **Colour Palettes**: If the Make Colour Palettes button is depressed, the console will make colour palettes. If you press the adjacent Separate by Wheel button, the console will create separate colour palettes for each colour wheel in fixtures that have more than one. This ensures that you can use the palettes to programme looks that use both wheels simultaneously, without the palettes conflicting with each other. Auto generated Colour palettes that make use of colour mixing information will automatically have their buttons colour coded with appropriate custom colour selections.

- **Beam Palettes**: If the Make Beam Palettes button is depressed, the console will make beam palettes. If you press the adjacent Separate by Wheel button, the console will create separate beam palettes for each beam effect wheel in fixtures that have more than one. This ensures that you can use the palettes to programme looks that use both wheels simultaneously, without the palettes conflicting with each other.
The Auto Palettes window also allows you to choose the alignment spacing of the palette's directory window. The alignment spacing controls how many palettes are displayed across the directory window; for example 6 for a half screen window, 12 for a full screen window.

For more information on groups and palettes, see *Working with Groups* (p. 181) and *Working with Palettes* (p. 187).

14.2 Patching Fixtures

Once fixtures have been added to the show, they need to be **patched** to the appropriate **DMX address**. On previous consoles such as Wholehog II this was a case of selecting one of several **DMX universes** and assigning a start address between 1 and 512. Because of the network capability of Wholehog OS, fixtures are assigned to a DMX Processor as well as a DMX universe and an address.

14.2.1 Adding and Removing DMX Processors

Wholehog OS automatically detects and makes available any connected DMX Processors, so you don't have to add them manually. If you want to patch fixtures to DMX Processors that are not currently connected to the console, you can add the DMX Processors to the show without them being physically connected:

1. **Setup** → **Patch** → **Patch @** : open the Fixture Patch window. The Patch @ button is on the toolbar at the top of the Fixture window.
2. Press the **Add** button below the list of DMX Processors. The **Add DP** window will open:

 ![Add DP Window](image)

3. Assign a net number.
4. **OK** : close the Add DP window.
5. **OK** : close the Fixture Patch window.

To remove a DMX Processor from a show file:

1. **Setup** → **Patch** → **Patch @** : open the Fixture Patch window. The Patch @ button is on the toolbar at the top of the Fixture window.
2. Select the DMX Processor you wish to remove from the show file.

3. Press the **Remove** button below the list of DMX Processors. A confirmation dialog will open. Press **OK** to unpatch and remove the DMX Processor.

14.2.2 Selecting the DMX Processor, Universe and Patch Point

Many fixtures, such as moving lights, use several DMX channels to control their various parameters. Generally, these DMX channels are in a continuous numerical range, and it is the first of these channels (known as the ‘start address’) that is the DMX address that you assign during the patching process. Wholehog OS uses the information about the fixture contained in the Fixture Library to calculate how many DMX channels are used by the fixture, and assigns them accordingly, starting at the Start Address you have given.

To patch a fixture:

1. **Setup → Patch**: open the Fixture window.

2. Select the fixture by clicking on it, then select **Patch @** to open the Fixture Patch window. See *Figure 14.7, “The Fixture Patch window”*.

3. Select a DMX Processor in the list on the left-hand side of the window. If there are no DMX Processors shown, or you want to patch to one that isn't listed shown in the list, you need to add it. See *Adding and Removing DMX Processors (p.139)*.

4. Click or press one of the available DMX universes shown to select a universe to patch to. The display gives a graphical indication of which addresses are already occupied. Type in a number for the fixture's DMX start address; the next free address is shown below each universe.

5. Click on **OK** or press Enter.

6. If you have finished patching, click on **Apply Patch** or close the Fixture window to send the new patch information to the DMX Processors.
You can also use the keypad to patch fixtures. For example, to patch Studio Color 1 to DMX Processor 2, Universe 4, at address 17:

- Fixture 1 @ 2/4/17 Enter

To patch further fixtures to the same DMX Processor and universe, you can use the shorthand:

- Fixture 2 @ 33 Enter

To patch a fixture at the next available address on the same DMX Processor and universe:

- Fixture 3 @ Enter

Again, if you have finished patching click on Apply Patch or close the Fixture window to send the new patch information to the DMX Processors.

Patching Several Fixtures at Once

If you select several fixtures and patch them, Wholehog OS will allocate them to a continuous range of DMX addresses, assigning each fixture's patch address so that it follows on from the last.

For example, to patch 5 Studio Colors, starting at DMX address 1:
1. Open + Fixture : open the Fixture window
2. Fixture 1 Thru 5 Patch @ 1, Enter : You can use the @ key as an alternative to the Patch @ button.

Studio Colors 1 to 5 will now have the incremental patch addresses of 1:1, 1:17, 1:33, 1:49, and 1:65. Note that the fixtures selected do not have to be from a contiguous range, and they can be of different types.

Tip
When you patch a range of fixtures, Wholehog OS takes the selection order into account, so that Fixture 1 Thru 10 @ 1 patches the fixtures starting with Fixture 1 and going up in numerical order, while Fixture 10 Thru 1 @ 1 patches the fixtures starting with Fixture 10 and going down in reverse numerical order.

Patching Fixtures to Multiple Addresses
You can patch one fixture to multiple different DMX addresses; this can be useful with desk channels, where you want one desk channel to control several dimmer channels. This is sometimes known as ‘soft patching’.

To patch a fixture to a second DMX address, select the fixture again and patch it as before. Alternatively, using the command line:

- **Fixture [Desk Channel] 1 @ 2/1/1 + 4/2/5, Enter** : patches the desk channel to DMX Processor 2, universe 1, address 1, and to DMX Processor 4, universe 2, address 5.

Similarly, you can patch a fixture multiple times so as to fill a specified range of DMX addresses. This can be useful if you want to soft patch a desk channel to a continuous series of dimmer DMX addresses.

- **Fixture [Desk Channel] 1 @ 1 Thru 10, Enter** : patches the desk channel to each address between 1 and 10.

Tip
You don't have to patch fixtures before you start programming. Once the fixtures have been added they can be programmed. However, without a patch, you will not be able to output DMX.
Finding Unused DMX Addresses

You can see an overview of all patched fixtures in the Fixture window by using View by DP; see Figure 14.8, “The View by DP view of the Fixture window”. This shows a spreadsheet with start address, fixture type and user number for each DMX universe. Additional rows show where there is an available space in the allocated DMX addresses. This is useful when you are patching additional fixtures and you need to know what ranges of DMX addresses are free. To show this view:

- Setup → Patch → View by DP : the View by DP button is on the toolbar at the top of the Fixture window.

You can use the buttons in the toolbar at the top of the window to view each group of four universes of a DMX Processor.

Deselect the View by DP button to return the Fixture window to its normal view.

14.2.3 Fixtures with Multiple Patch Points

Some fixture types consist of several separate elements that work together, each with their own DMX address. An example is a parcan with a scroller, which operationally you want to treat as a single fixture (‘a light that can change brightness and colour’) but that physically consists of a dimmer-controlled lamp and a colour scroller. Similarly, some moving fixtures such as the Vari*Lite VL5 consist of the moving head with its own control electronics, fed by an external dimmer. See Figure 14.9, “Examples of Fixtures requiring Multiple Patch Points”.

With such fixtures, there are two or more DMX start addresses, which may not be numerically adjacent, and indeed may be on different universes and DMX Processors. Wholehog OS handles this by giving these fixtures multiple 'Patch Points’, which you address separately in the Fixture Patch window.

For example, to patch the fixture with a scroller (of fixture type ‘Scroller Dimmer’) shown in Figure 14.9, “Examples of Fixtures requiring Multiple Patch Points”:

1. Setup → Patch : Open the Fixture window.
2. **Fixture [Scroller Dimmer] 1 @** : Opens the Fixture Patch window.
3. Select the **Fixture Patch Point** (for the scroller) from the drop down list in the top right corner of the Fixture Patch window:

4. Click **DMX 2** to select the second DMX universe.
5. **[501] Enter** : Enter the DMX address for the scroller.
7. Click **DMX 4** to select the fourth DMX universe.
8. Select the **Intensity Patch Point** (for the dimmer) from the drop down list.
9. **[2] Enter** : Enter the DMX address for the dimmer.
10. Click on **Apply Patch** or close the Fixture window to send the new patch information to the DMX Processors.

In the Fixture window, these types of fixture will span more than one row - one for each Patch point; see Figure 14.10, “A Fixture with Multiple Patch Points”.

Figure 14.9. Examples of Fixtures requiring Multiple Patch Points

![Diagram of fixtures and patch points](image-url)
14.2.4 **Cloning Patching of Universes**

Cloning patching copies fixture and associated patch information from one DMX universe to another. A selected fixture will therefore control recurring patch locations across several universes.

To clone the patching of one universe to another:

1. **Setup → Patch → View by DP**: open the Fixture window in View by DP view.
2. Select the universe to clone by clicking on the column in the spreadsheet. The selected universe is highlighted in blue.
3. Press Clone Universe. The Clone Universe window will open; see Figure 14.11, “The Clone Universe window”.
4. Select a destination DMX Processor and universe. You can create a new DMX Processor if you want to clone to a universe on a DMX Processor not currently connected to the console, and you can specify an offset for the patch addresses to position them differently in the universe. Click on OK when you have finished.
5. Click on **Apply Patch** or close the Fixture window to send the new patch information to the DMX Processors.

![Figure 14.10. A Fixture with Multiple Patch Points](image)

![Figure 14.11. The Clone Universe window](image)
If cloning will overwrite patch information in the destination, you will be asked for confirmation. The console will only unpatch previous fixtures that are in the way of new ones; the rest of the destination universe will be untouched.

Tip
You can also move patching from one universe to another by cloning the patch to the new universe, and then unpatching the old universe; see *Unpatching Fixtures (p.147)*.

14.2.5 Cloning Patching of DMX Processors

You can copy fixture and associated patch information from one DMX Processor to another by cloning a DMX Processor's patch. A selected fixture will then control recurring patch locations across several DMX Processors.

To clone the patching of one DMX Processor to another:

1. **Setup → Patch → View by DP**: open the Fixture window in View by DP view.
2. Select the DMX Processor to clone by selecting it from the DMX Processor drop down menu.
3. Press Clone DP. The Clone DMX Processor window will open; see Figure 14.12, “The Clone DP window”.
4. Select a source DMX Processor from the source section of the window. Click Unpatch Source if you wish to move patch entries to the destination DMX Processor instead of copying them.
5. Select a destination DMX Processor from the destination section of the window. If there is conflicting patching on the destination DMX Processor you can choose to unpatch only fixtures in conflict from the destination DMX Processor or to unpatch all fixtures already patched to the destination.

When cloning between a DMX Processor 8000 and a DMX Processor 2000 you can select which four universes to clone to or from via the universe selection buttons.

6. You can create a new DMX Processor if you want to clone to a universe on a DMX Processor not currently connected to the console. Click the Add DP button and then select a DMX Processor type.
7. Click OK.
8. Click on Apply Patch or close the Fixture window to send the new patch information to the DMX Processors.
14.2.6 **Unpatching Fixtures**

You can unpatch a fixture in order to repatch it with a different start address, or to stop DMX output being sent to it. Unpatching does not erase any programming for the fixture in groups, palettes, cues and so on.

There are two ways to unpatch. Unpatching by fixture removes all patching information for that fixture, even if it has been patched to several start addresses or has multiple patch points. Unpatching by start address only unpatches a specific start address, leaving other start addresses associated with the fixture intact.

Unpatching by Fixture

To unpatch all patch information associated with a fixture:

1. **Setup → Patch** : open the Fixture window.
2. Select the fixture by clicking on it, then press **Unpatch** at the top of the Fixture window. This unpatches the fixture, but leaves all programming for the fixture intact.
3. Click on **Apply Patch** or close the Fixture window to send the new patch information to the DMX Processors.

Or, using the command line:

1. **Setup → Patch** : open the Fixture window.
2. **Fixture 1 Pig + @. Enter**
3. Click on **Apply Patch** or close the Fixture window to send the new patch information to the DMX Processors.
Unpatching by DMX Address

To unpatch a specific DMX start address you need to change the Fixture window to View by DP:

1. Setup → Patch: open the Fixture window.
2. View by DP: change the Fixture window to View by DP.

When View by DP is selected, the Unpatch @ button is available on the top toolbar of the Fixture window. To unpatch start address 200 in the currently selected DMX universe (highlighted in blue):

- Unpatch @ 200

To unpatch several start addresses:

- Unpatch @ 1/2/200 + 2/3/300

To unpatch a range of start addresses:

- Unpatch @ 200 Thru 300: unpatches all start addresses between 200 and 300.

To unpatch an entire universe:

1. Click or press on the universe to unpatch, so that it is highlighted in blue.
2. Press Unpatch Universe at the top of the Fixture window and confirm that you want to unpatch.

Click on Apply Patch or close the Fixture window to send the new patch information to the DMX Processors.

To unpatch an entire DMX Processor:

1. Select the DMX Processor to unpatch from the dropdown list at the top of the Fixture window.
2. Press Unpatch DP, and confirm that you want to unpatch.

Click on Apply Patch or close the Fixture window to send the new patch information to the DMX Processors.

14.3 Configuring Fixtures

Each fixture has a variety of settings that control how Wholehog OS handles it. Settings that control how the fixture as a whole behaves are configured in the Fixture window, while settings that are specific to individual parameters are configured in the Edit Fixtures window.
14.3.1 **Fixture Configuration**

To open the Fixture window (Figure 14.13, “The Fixture window”):

- Setup → Patch

Or:

- Open + Fixture

![Figure 14.13. The Fixture window](image)

In the Fixture window, you can view, but not alter, the fixture type and communications protocol for each fixture. To show these columns, right-click on any column header, and select either Type or Protocol.

Modifying the User Number

The User Number is the number that you use to select a particular fixture when programming. By default, Wholehog OS gives each fixture type its own range of user numbers, so that there might be several fixtures numbered 1, of different types. If this is the case, the fixture number has an asterisk next to it in the Fixture window:

![Fixture Window](image)

To change the User Number:
1. Open + Fixture
2. Select the fixture's Num cell (short for User Number).
3. Set, [new number]. Enter

To change several User Numbers at once:

1. Open + Fixture
2. Select a range of User Number cells by pressing or clicking, and then dragging.
3. Set, [new number]. Enter: allocates a range of User Numbers starting with the number that you enter.

Tip

You can renumber the fixtures in your show so that each one has a unique number irrespective of its type. By doing this you never have to specify the type when selecting fixtures, which can speed up programming. See Selecting Fixtures (p.155).

Notes

Notes can be used to attach a comment to a fixture, such as its location or intended use.

To add a note:

1. Open + Fixture
2. Select the fixture's Note cell.
3. Set [text of note] Enter: Type in the note text.

Tip

Fixture notes can be displayed in editors such as the Programmer, but this is turned off by default. To display notes, right click on any column header in the editor, and select Note.

Patch Notes

Patch Notes can be used to attach a comment to a fixture regarding its patching.

To add a Patch Note:

1. Open + Fixture
2. Select the fixture's Patch Note cell.
3. Set [text of note] Enter: Type in the note text.
Inverting and Swapping Pan and Tilt Axes

Depending on a fixture's orientation in the rig, you may want to invert or swap its pan and tilt axes. For example, inverting the pan can ensure that when moving the Trackball left, a fixture rigged facing the operator moves to the operator's left, not the fixture's left.

Similarly, if units are rigged facing across the stage rather than facing up or down stage, then swapping the axes keeps the Trackball movement and the fixture movement the same. This also ensures that fixtures selected in groups all move in the same direction as the Trackball is moved.

Fixtures that are rigged in other positions, for example on the stage floor as opposed to hanging, then combinations of swap and invert (either pan, tilt or both) may be required.

To invert axes:
1. Open + Fixture
2. Scroll to the desired fixture, and select either its Pan Invert or Tilt Invert cell.
3. Press Set, and choose Yes to invert the axis.

To swap axes:
1. Open + Fixture
2. Scroll to the desired fixture, and select its SwpAxes cell.
3. Press Set, and choose Swap to swap axes.

Proportional Patch

You can use proportional patching to change the intensity value output by the console to a fixture, relative to the intensity value that has been programmed. All intensity values for the fixture are reduced in proportion, so that with a proportional patch of 80%, a programmed intensity of 100% would be output as an intensity of 80%, and one of 50% would be output as 40%. You can use this to limit the maximum intensity of a fixture so that it never goes above 80%, for example, by assigning the proportional patch to 80%.

To assign a fixture's proportional patch:
1. Open + Fixture
2. Select the Intensity % cell for the fixture required.
3. Set, [percentage], Enter: enter a percentage.
4. To return the proportional patch to normal, assign the value to 100%.

You can assign a proportional patch value of above 100%. For example, if you patch at 200%, the intensity value that the console outputs will be twice that programmed. A programmed value of 25% will give 50% output, and 50% will give 100%. Programmed levels above 50% will not, regrettably, give fixture intensities above 100%.

Note that if you proportionally patch a fixture, its intensity will still be displayed on the console in the range 0 to 100%, even though the output value will be varying over the range defined by the proportional patch value.
Colour Calibration

The Fixture window has a column labeled Col Cal, which shows whether the fixture has colour calibration data in the fixture library. You cannot edit this column, but it is useful to be able to check if the fixture is colour calibrated when working with the Colour Picker; see Working with Colour (p.165).

14.3.2 Parameter Configuration

You can configure settings that are specific to individual parameters in the Edit Fixtures window (Figure 14.14, "The Edit Fixtures window"):
- Setup → Patch → Edit Fixtures

![Figure 14.14. The Edit Fixtures window](image)

You can select a fixture type from the list on the left hand side of the window. The main part of the window then shows the configurable settings for each fixture of that type. The numbered buttons in the Jump Toolbar at the top of the window take you quickly to a particular fixture of that type.

Pressing the Sort by Function button in the top left of the window changes the view, so that the main list groups each parameter together for all the fixtures of the type selected in the list. This is often the easiest way to work in the window, as you can easily click or press and then drag to select a range of cells to edit. For example, you could assign in one action the default value for the pan parameter of all the Studio Color 575 fixtures in the show; see Figure 14.15, “The Edit Fixtures window sorted by Function”.

Reference

Section 14: Adding and Configuring Fixtures
Assigning Minimums and Maximums for Parameters

When fixtures are placed close to obstacles, such as trussing or set pieces, it may be important to limit movement to prevent accidental damage, especially when the fixture is out of view of the operator. However, other functions can also be limited, for example to implement a house or event policy on the use of strobe lighting.

Note that limits can only be assigned for continuous parameters, not slotted ones.

To assign limits:
1. **Setup** → **Patch** → **Edit Fixtures**
2. Select the **Minimum** cell of the parameter you wish to limit.
3. **Set**, `[new value]`, **Enter**: Enter a value as a real world unit. In the case of pan and tilt, it will be a plus or minus number of degrees from the fixture's default position.
4. Repeat to assign the **Maximum** value.

Assigning a Custom Default

The default value is the value that the parameter will take when no playbacks or editors are controlling it. Fixtures also go to their default setting when the console starts up.

To assign a custom default:
1. **Setup** → **Patch** → **Edit Fixtures**
2. Select the **Default** cell of the desired parameter.
3. **Set**, `[new value]`, **Enter**: Enter a value as a real world unit.
Assign a Parameter Offset

This setting allows you to offset the range of values over which a parameter varies. For instance if one fixture is hung at an angle to the bar, so that it has a different pan centre-point from all the others on that bar, then you could assign an offset so that the fixture appeared to line up from a programming and operating point of view.

To assign a parameter offset:

1. Setup → Patch → Edit Fixtures
2. Select the Offset cell of the desired parameter.
3. Set, [new value], Enter: Enter a value as a real world unit.

Important
Applying an offset to a parameter after you have programmed values for it into your show will mean that those values will also be offset.

Naming Slots

Some fixture parameters are continuously variable, for example CMY colour mixing. On the other hand some parameters, for example gobo or colour wheels, work in discrete increments or ‘slots’.

The Fixture Library loaded into Wholehog OS defines the fixture’s default slots, displayed on the Slot Toolbar, in palettes and the Programmer. When custom gobos or colours are used, you can customise the show file to display a suitable name for each gobo or colour slot, chosen from those in the fixture library.

To name a slot parameter:

1. Setup → Patch → Edit Fixtures
2. For the desired fixture, scroll right and select the Slot cell for the parameter required.
3. Press Set, select the desired slot name from the list, and press Enter.

Releasable Parameters

Fixture parameters move to their default values when they are released. You can prevent specific fixture parameters from returning to their default values, so that they hold their current value until they are assigned to a new programmed value:

2. Click on the Releasable cell for the required fixture parameter.
3. Press the Set key to assign the fixture parameter to be releasable or not as required.
Section 15: Selecting Fixtures, Modifying Parameters

You can select Fixtures and modify their parameters in the Programmer. Once recorded in palettes, cues and scenes they can be adjusted in editors. The Programmer and other editors all work in essentially the same way; for an overview of editors see Working with Editors (p.113).

Figure 15.1. The Programmer window

To open the Programmer:

- Select Programmer from the Main Toolbar.

To open other editors:

- Select the desired palette, cue or scene and Open. Press the Edit button in the editor window if you want to change, not just view, parameter values.

If you have several editors open, only one will receive commands from the command line; use the Edit button in each editor window to select which one. When you open an editor with the Open key, it is automatically made the editable editor.

Tip
To have editors open without automatically becoming the editable editor, go to Setup → Preferences → Programming → Preview Editors and select Open As Inactive.

15.1 Selecting Fixtures

On Wholehog OS, you select fixtures and desk channels using the command line with the numeric keypad, or visually in the editor. For an overview of the command line, see Using the Command Line (p.115).
15.1.1 **Selecting Individual Fixtures**

To select a fixture visually in the editor window, click on its number in the Num column of the spreadsheet.

To select a fixture using the command line, you need to select the fixture type followed by the fixture's number. For example, to select Studio Color number 1:

- **Fixture, [Studio Color 575], 1**: when you press the Fixture key, types of available fixtures will appear at the bottom of the right hand touch screen, where you can select [Studio Color 575]:

Wholehog OS maintains the type of the last fixture selected. If, for example, Studio Colors are selected then all fixture numbers entered into the command line will refer to Studio Colors until a new fixture type is selected.

Tip

Repeated pressing of the Fixture key will cycle through the available fixture types.

If you have assigned your user numbers as a non-repetitive single sequence, simply type the fixture's user number irrespective of type. For example, using the tutorial show fixtures and user numbers:

- **1, Enter**: selects the first Studio Color.
- **21, Enter**: selects the first Technobeam.

To assign user numbers, see *Modifying the User Number (p.149).*

Note that throughout this manual, the examples generally assume that you have assigned user numbers so that they are unique. The syntax shown does not include selecting a fixture type.

15.1.2 **Selecting Multiple Fixtures**

You can select more than one fixture of the selected type using the +, – and Thru key. For example:

- **Fixture 1 + 5, Enter**: selects fixtures 1 and 5.
- **Fixture 1 Thru 5, Enter**: selects fixtures 1 to 5.
- **1 Thru 5 – 4**: selects fixtures 1 to 5, but not 4.
- **1 Thru 5 + 7**: selects 1 to 5 and also 7.
• 5 Thru Enter: selects from fixture 5 of the current type through to the last fixture of the current type.

• Thru Enter: selects all fixtures of the current type.

You can also select more than one fixture from a range of fixture types, for example Studio Spot 1 and Studio Color 6:

• Fixture [Studio Spot 575] 1 Fixture [Studio Color 575] 6, Enter

Note that selections are cumulative, building the total selection, until the selection is used to perform an action on the selected fixtures. After that, subsequent selections start from nothing, unless you use + or – to add or subtract from the previous selection.

Tip

To select all fixtures of a particular type, press the Fixture key then Pig + [Fixture type] from the toolbar at the bottom of the right-hand touch screen.

15.1.3 **Select All**

You can select all the fixtures in the Programmer using the All button on the Select Toolbar. For example:

1. Studio Colors 1 to 5 are in the Programmer, but not selected.
2. Main Toolbar → Select: open the Select Toolbar; see Figure 15.2, “The Select Toolbar”.
3. All: the selection is now Studio Colors 1 to 5.

Or with a key shortcut:

• Next + Back: hold down Next and press Back.

Figure 15.2. The Select Toolbar

15.1.4 **Inverting the Selection**

You can invert the current selection, so that the fixtures in the editor that were previously not selected become the new selection. For example:

1. Studio Colors 1 to 5 are in the Programmer.
2. Fixture 1 + 3 + 5: select Studio Colors 1, 3 and 5:
3. **Main Toolbar → Select**: open the Select Toolbar; see *Figure 15.2, “The Select Toolbar”*.

4. **Invert**: the selection is now Studio Colors 2 and 4:

15.1.5 **Sub Selections**

You can make sub selections from within the current selection, using the Next and Back keys, and the Odd, Even and Random buttons on the Select Toolbar:

- **Main Toolbar → Select**

Random: The Random button selects a single fixture at random from the current active selection in the Programmer.

Even and Odd: The Even and Odd buttons on the Select Toolbar select the even and odd fixtures from the current selection, according to the *Selection Order* (p.159). Note that the selection order is not related to fixture user numbers, so the sub selection produced by Odd might contain even-numbered fixtures.

Next and Back: The Next and Back keys on the console select a single fixture from within the current selection. Repeatedly pressing Next or Back steps forwards or backwards through the current selection, with the order determined by the *Selection Order* (p.159).

To select even or odd fixtures from the current selection based upon fixture user numbers, use Pig + Even or Pig + Odd.

Tip

When the Trackball is in position mode, the bottom left Trackball key also acts as a Next key. This can make it very fast to work through a selection of fixtures assigning their position.
15.1.6 **Deselecting Fixtures**

To deselect all selected fixtures, press the Backspace key when the command line is empty. You can also use the following command line syntax:

- **Fixture 0 Enter** : deselects all fixtures.

To deselect specific fixtures, use the – key:

- **– Fixture 1** : deselects Fixture 1.

Alternatively, you can deselect a fixture visually in the Programmer or editor window by clicking on its number in the Num column.

15.1.7 **Reselecting Fixtures**

You can recall the last sub selection made before deselecting fixtures by pressing Previous on the Select Toolbar.

15.2 **The Selection Order**

The order in which you select fixtures is significant in controlling how fanning and effects are applied to them; see *Fanning* (p.173) and *Working with Effects* (p.253). For example, applying a fan or effect after selecting fixtures 1-5 can appear different than if you selected fixtures 1 + 3 + 2 + 4 + 5.

The selection order is relevant during programming, and is recorded as part of groups, but it is not recorded in palettes, cues or scenes.

Tip

Because the console records the selection order as part of groups, you can select the group and use the Next and Back keys to subselect each fixture in a particular order. By controlling the selection order when you record the group, you can then work through a series of fixtures in the order they are physically positioned in the rig, instead of in numerical order.

15.2.1 **Reverse, Shuffle and Reorder**

You can change the selection order of fixtures in predefined ways. The Reverse, Shuffle, and Reorder buttons are on the Select Toolbar and Fanning Toolbar:

- **Main Toolbar → Select** : open the Select Toolbar.

Reverse: reverses the selection sequence, so that the last is first and the first is last. For example, the fixture selection 1-5 becomes 5-1.
Shuffle: randomises the selection order of the current selection. For example, the fixture selection 1-5 becomes 3 + 5 + 2 + 1 + 4.

Reorder: sorts the selection order to match the User Number order. For example, the fixture selection 3 + 5 + 2 + 1 + 4 becomes 1-5.

Tip

The Reverse, Shuffle, and Reorder buttons can also be found on the Fanning Toolbar, which you can open by pressing and holding the Fan key. See *Fanning* (p.173).

15.3 Modifying Parameters

Once fixtures are selected within an editor, you can modify their parameters. Wholehog OS classifies parameters into four parameter types: intensity, position, colour and beam. There are also three special types: effect, time and control.

Wholehog consoles provide several ways to adjust the different parameter types:

- **Command Line**: Use for intensity and selecting palettes.
- **I-Wheel**: Use for intensity.
- **Trackball**: Use for position (pan and tilt). Use the top-right Trackball key to switch the Trackball between controlling the on-screen pointer and the position of selected fixtures.
- **Parameter Wheels**: Use for intensity, position, colour, beam, effects, time and control. To change the parameter type currently controlled by the parameter wheels, select one of the parameter type keys on the front panel: *Intensity*, *Position*, *Colour*, *Beam*, *Effect*, *Time* and *Control*.

If the fixture has more parameters of a particular type than there are parameter wheels you can press the parameter type keys to page through the parameters.

- **Slot Toolbar**: Use for parameters that have discrete rather than continuous values (known as ‘slotted’), such as the positions of a colour wheel. This gives you button-press control of the possible values.

The Slot Toolbar also has buttons to access the control functions: Enable, Mode and Control.

- **Spreadsheet**: You can directly edit a parameter's value in an editor's spreadsheet view. Click on the cell, press Set, type in a value and press Enter.
- **Colour Picker**: You can assign hue and saturation values for a fixture's colour using the Colour Picker. See *The Colour Picker* (p.167).
- **Gel Picker**: You can assign the colour of fixtures to match a colour filter from various manufacturers' ranges using the Gel Picker. See *The Gel Picker* (p.168).
15.3.1 Intensity

Fixture intensities can either be assigned from the keypad or using the I-Wheel, as well as the parameter wheels and by editing directly in the editor spreadsheet.

With the @ Key

To assign intensities using the @ key and the numeric keypad:

- Fixture 4 @ 70, Enter : assigns Fixture 4 to 70%.
- Fixture 4 @ 5, Enter : assigns Fixture 4 to 50% (not 5%).
- Fixture 4 @ 05, Enter : assigns Fixture 4 to 5%.

To assign fixtures to full or zero:

- Fixture 4 Full : assigns Fixture 4 to full.
- Fixture 4 Out : assigns Fixture 4 to zero. The Out button is on the Main Toolbar.

The intensity of a fixture can be changed relative to its current level, for example:

- Fixture 4 @ + 5, Enter : increases the intensity of Fixture 4 by 50%.
- Fixture 4 @ – 10, Enter : reduces the intensity of Fixture 4 by 10%.

The intensity of a fixture can be scaled proportionally, for example:

- Fixture 4 @ / 70, Enter : scales the intensity of Fixture 4 to 70% of its original value.
- Fixture 4 @ / 120, Enter : scales the intensity of Fixture 4 to 120% of its original value.

With the I-Wheel

Moving the I-Wheel changes the level of the selected fixtures. When selecting several fixtures and adjusting levels, the wheel will maintain relative differences between them, so that all intensities change by the same amount. For example, if fixture 1 is at 10%, 2 at 50% and the wheel is increased by 10%, then fixture 1 will move to 20% and 2 will move to 60%.

By holding the Pig key whilst using the wheel, intensities will be increased or decreased in proportion to their individual level. For example, if fixture 1 is at 10%, 2 at 50% and the wheel is increased by 10%, then fixture 1 will move to 11% and 2 will move to 55%.

The Nudge Up and Nudge Down keys above and below the I-Wheel can be used to increase and decrease the intensity by a preset amount. The size of the increment is 10% by default, but you can change it in the Programming pane of the User Preferences window.
Using Pig + Nudge Up and Pig + Nudge Down will create a half nudge step. It will increase or decrease the intensity by half of the assigned amount. For instance if the nudge value is set to +10% a Pig + Nudge Up will produce +5%.

Remainder Dim

The Rem Dim button on the Main Toolbar takes to zero the intensity of any unselected fixtures in the current editor that currently have above-zero intensity. You can use the Undo button to reverse the Rem Dim command.

15.3.2 **Position**

Using the Trackball

To switch the Trackball from controlling the cursor to controlling fixture position, press the top right selection key adjacent to the Trackball. When controlling fixture position the Trackball will glow blue, and can be used in two modes. To change mode press the top right Trackball selection key.

- **Position Mode:** In the default mode, the pan and tilt of the fixture follows the movement of the Trackball.
- **Ortho Mode:** Ortho mode helps the accurate positioning of fixtures by constraining pan while changing tilt, or vice versa.

The Status Bar at the right hand end of the Command Line Toolbar shows when the Trackball is in Position Mode with the legend ‘POS’, and when it is in Ortho Mode with the legend ‘POS, ortho’.

You can assign the way that fixtures move in relation to the Trackball. See *Inverting and Swapping Pan and Tilt Axes* (p.151).

Tip

An external mouse will always control the graphical pointer, so you can keep the Trackball in position mode to save having to change modes as you programme.

Using the Parameter Wheels

The pan and tilt parameters also appear on the parameter wheels after the Position key is depressed, and can be used as an alternative to the Trackball.

Flip

With some moving lights, there is more than one combination of pan and tilt that results in the beam hitting the same point on the stage. You may sometimes want to change the pan and tilt combination being used, for example to ensure that the fixture takes the most direct route during a position change.
The Flip function cycles the selected fixtures through the possible combinations in turn. To do this, select the fixture or fixtures and press Flip on the Main Toolbar.

Holding the Pig key down while pressing Flip cycles through the combinations the other way.

Tip

When the Trackball is in position mode, the top left Trackball key also acts as a Flip key, for quick access while positioning fixtures.

15.3.3 Continuous Parameters: Colour and Beam

Colour and beam parameters can be either discrete (known as 'slotted') or continuous. An example of a slotted parameter is the gobo and colour wheels in a moving light, which can be assigned to values such as Gobo 1 and Colour 3. Examples of continuous parameters are the colour mixing controls on some moving lights, irises, and variable-speed strobes; these can be assigned to a percentage or real-world value. It is sometimes useful to treat slotted parameters as continuous; for example, you might want to assign a gobo or colour wheel part way between two positions to achieve a particular effect. Wholehog OS allows you to treat such parameters as either slotted or continuous when assigning values to them.

To control continuous colour and beam parameters:

1. Press the appropriate parameter type key: Colour or Beam. The Wheels Toolbar shows the available parameters and their current value; see Figure 15.3, “The Wheels Toolbar for the Beam Parameters of a Studio Spot 575”.

2. If the selected fixture has more parameters of the selected type than there are wheels, the Wheelsets Toolbar will open; see Figure 15.4, “The Wheelsets Toolbar for a Studio Spot 575”. Page through the available parameters by pressing the parameter type key again, or select a button on the toolbar.

3. Adjust the parameter value using the parameter wheels.

Some parameters that appear on the parameter wheels have more than one mode. These modes are shown as a list on the Wheels Toolbar, and you can select the modes by clicking on the wheel's button on the toolbar.
Direct Value Entry

For parameters appearing on the parameter wheels, you can hold Set, then press the associated button on the Wheels Toolbar to open a direct value entry dialog; see Figure 15.5, “The Wheels Toolbar Direct Entry Dialog”

![Figure 15.5. The Wheels Toolbar Direct Entry Dialog](image)

Enter a value for the parameter in the direct value entry box and select any available modes. Press Enter to complete the direct value entry.

Snapping to a Single Value

When you have several fixtures selected, you can make all the values of a parameter the same as that of the first fixture:

- Press and hold the / key while turning the appropriate parameter wheel.

Jumping to Endstop Values

You can assign a parameter to its endstop values:

- Press and hold the + key and adjust the appropriate parameter wheel clockwise to assign the parameter to its maximum value, and anticlockwise to assign the parameter to its minimum value.

Inverting Parameter Values

Some parameters have values either side of zero; for example, gobo rotation speed. You can invert such parameters so that they have the same value but the other side of zero. In the case of gobo rotation, this reverses the direction whilst maintaining the current speed. To invert a parameter:

- Press and hold the – key and adjust the appropriate parameter wheel.

15.3.4 Slotted Parameters: Colour and Beam

To control slotted colour and beam parameters such as gobo and colour wheels:

1. Press the appropriate parameter type key: Colour or Beam. The Slot Toolbar shows the available parameters; see Figure 15.6, “The Slot Toolbar for a Studio Spot 575”.

2. Click on the required parameter, and an additional toolbar will open showing the available slot positions; see Figure 15.7, “The Colour Slots Toolbar for a Studio Spot 575”.

Reference Section 15: Selecting Fixtures, Modifying Parameters
3. Select a slot from the available slot positions.

![Figure 15.6](image_url)

Figure 15.6. The Slot Toolbar for a Studio Spot 575

![Figure 15.7](image_url)

Figure 15.7. The Colour Slots Toolbar for a Studio Spot 575

15.3.5 Working with Colour

Fixtures that have continuously variable colour mixing create colour in different ways. The two main systems are:

- **CMY:** this system is used by most moving lights that have continuous colour mixing; the colour is controlled by three parameters: Cyan (C), Magenta (M) and Yellow (Y). Fixtures that use the CMY system start by producing white light, and then filter out the unwanted colours to leave the desired colour; higher parameter values produce a greater filtering effect, so that setting them all to 100% produces black. To avoid wasting the light intensity of the fixture, you should always keep at least one of the CMY parameters at 0%, setting the other two at higher values to get more saturated colours. For example, values of 0%C, 0%M, 20%Y will produce a pale yellow tint, while 0%C, 100%M, 0%Y will produce a fully saturated magenta. Mixing two of the colours will produce further shades, so 50%C, 0%M, 50%Y will produce a middle-saturation green.

- **RGB:** this system is used mainly by fixtures based on LEDs. The colour is controlled by three parameters: Red (R), Green (G) and Blue (B); with the three parameters at 0% the fixture produces no light output, and the higher than value of these parameters, the greater the fixture's total light output. If the three parameters have equal values, then the light output will be white (within the limits of the technologies used). Use one or two of the parameters to get the colour you want, and then add the other(s) to de-saturate it ('dilute’ it towards white). For example, values of 0%R, 0%G, 100%B will produce a bright, saturated blue, while 80%R, 80%G, 100%B will produce a bright, blue tint. 50%R, 100%G, 100%B will produce a middle-saturation cyan.

While Wholehog OS allows you to control the CMY or RGB parameters of fixtures directly, this method has several disadvantages:

- With both the RGB and CMY systems, it is difficult to remember what combination of settings will achieve the colour you want.
- With both systems, colour and fixture intensity are linked. Under the CMY system, giving all three parameters values above 0% unnecessarily reduces the light output; with the RGB system, fixtures often don't provide a separate intensity parameter so you have to control it with the colour parameters. However,
it is usually much more convenient when programming to keep colour and intensity completely separate.

- The different colour systems, together with different lamp types used, make it difficult to match colours between fixtures of different types. Furthermore, during crossfades colours tend not to remain matched through the duration of the cue, producing uneven colour fades.

Wholehog OS solves these problems by introducing a third colour system: Hue and Saturation (HS). Under the HS system, a fixture’s colour is determined by two parameters:

- **Hue:** the colour’s position in the possible range of colours, from red, going through yellow, green, cyan, blue and magenta, and finally returning to red. As the range ‘wraps around’, you can visualise it as a circle with the colours positioned around the edge, with red at the top, green at the lower right, blue at the lower left, and the intermediate colours in between. The angle between 0 and 360 degrees specifies the hue of the colour: red has a hue of 0 degrees, yellow has a hue of 60 degrees, and cyan has a hue of 180 degrees. See Figure 15.8, “The Colour Wheel”.

- **Saturation:** how ‘strong’ or ‘pale’ the colour is. Pale colours have low saturations, while strong colours have high saturations. Saturation is specified as a percentage between 0% (white) and 100% (the strongest possible saturation).

When you programme with the HS parameters, Wholehog OS stores all values as HS, and converts them to CMY or RGB as required when sending DMX data to the fixtures. As part of this process, the console is able to match the colours of different fixture types; see Using Colour Matching (p.167).

The Hue and Saturation parameters of fixtures with continuous colour mixing are controlled in the same way as other continuous parameters; see Continuous Parameters: Colour and Beam (p.163). You can also use the Colour Picker and Gel Picker; see The Colour Picker (p.167) and The Gel Picker (p.168).
Using Colour Matching

One of the advantages of the Wholehog OS's HS colour system is its ability to match colours across different fixture types. Assigning the Hue and Saturation parameters of two different types of fixtures will set them to the same visual colour (within the limitations of the fixtures), but it might send different DMX values to each. Furthermore, they will maintain that match through a crossfade, ensuring even colour fades.

For colour matching to work, the fixtures need to have a colour calibration in the fixture library; you can check this in the Fixture window:

- Setup → Patch

If the fixture has Yes in the Col Cal column, then it has a colour calibration. Fixtures that are not calibrated will use a standard DMX mapping to determine hue and saturation.

Different types of fixture have different colours for ‘white’, because of the different types of lamp used. Tungsten lamps have a ‘warmer’ colour with a higher red and yellow content, while arc lamps usually have a ‘cooler’ light with more blue in it. One version of white is not more ‘correct’ than the other, but there needs to be a single agreed ‘white point’ for all fixtures to match when the Saturation parameter is assigned to 0%. Wholehog OS allows you to assign the White Point to Tungsten or Arc:

1. Setup → Preferences → Misc
2. Choose between Arc and Tungsten.

In a theatrical environment where tungsten sources are more common tungsten white is likely to be most appropriate base. In other environments predominantly using arc sources, it will be more convenient to use arc white.

Important

Before assigning the colour of fixtures using Hue and Saturation, make sure that you have selected your preferred white point. Changing it after you have started programming will change the appearance of previously programmed colours.

The Colour Picker

You can use the Colour Picker to graphically select Hue and Saturation values. To open the Colour Picker:

- Hold down the Open key and select HS Picker.

Or:

- Pig + Open + Colour

There is also a button to open the Colour Picker in the Colour Directory window. The Colour Picker will change its display according to the fixture selection:
With no fixtures selected, you just see the colour wheel with saturated colours around the outside, and paler colours towards the centre.

When a calibrated fixture is selected, a dashed line will be superimposed on the colour wheel. This line represents the fixture's gamut, or range of colours that it can achieve. To select any colour within this range, simply click on it. The new selection will be marked by a superimposed cross and circle. If you select a colour outside the fixture's gamut, one marker (‘X’) indicates the colour that was chosen, while a second (‘O’) indicates the closest colour that the fixture can produce. The two markers are joined by a line to indicate they are related.

Fixtures that do not have colour mixing capabilities do not appear in the Colour Picker.

If you have several different fixture types selected, the lines on the colour picker change to display the range of colours that all of the selected fixtures can achieve (shown as a dotted line), as well as the range of colours that at least one of the fixtures can achieve (shown as a dashed line). When you select a colour, a single target marker (‘X’) is displayed, connected to a series of ‘O’ markers, one for each fixture type.

The Colour Picker also displays the gamuts and markers for fixtures that are currently in the editor, but not selected. These are shown in grey.

Fixtures that are not color calibrated use a standard HS method and the Colour Picker will appear without any dashed lines.

The Gel Picker

You can use the Gel Picker to select colours matched to traditional gels. Clicking on a button in the Gel Picker sets the Hue and Saturation parameters of the selected fixtures to values that match the selected colour as closely as possible.
You can select colours from the Lee, Rosco E-Colour, Rosco Supergel and GamColor ranges, using the buttons in the toolbar at the top of the window. You can also select whether to match to the gel as it would appear in a Par 64 or similar conventional tungsten source, or in a Source 4, which has a slightly bluer light output.

There is a button to open the Gel Picker in the Colour Directory window.

![Gel Picker](image)

Figure 15.10. The Gel Picker

Note that the Gel Picker colours are not palettes, and will not be embedded in programming; they are simply shortcuts to the appropriate HS values. Gel Picker colours are a closer match when applied to colour calibrated fixtures than non calibrated ones.

15.3.6 Fine Control

Holding the Pig key and moving the encoder wheel allows fine adjustment of the currently selected parameter, so that each turn of the wheel will change the parameter value by a smaller amount. This is useful for making exact adjustments to values.

15.3.7 Touching Parameters

When you start to record your programming as cues you will find that only the parameters that you have assigned values to are stored; these are known as ‘Hard Values’. This is important because in cuelists values track through until they are changed, and this allows different playbacks to interact to create a single onstage look. For a complete explanation of tracking, see Tracking (p.6).

However you will sometimes want to ensure that a value is stored at its current value in a cue or palette. To do this you can Touch it:

- To touch all parameters of the current selection simply press the Touch key on the Main Toolbar.
- To touch only the parameters of a particular kind, press the appropriate parameter type key followed by Touch. For example:
• **Position Touch**: touches all position parameters of the selected fixtures.

• To touch a single parameter you can hold the Touch button while moving that parameter's wheel slightly. The current value will be touched without modification from the parameter wheel.

Untouched values appear in the editor with a white background. Once you have touched parameter values they are available for recording in the same way as any value that you have assigned. They are shown with a blue background, indicating that they have been modified:

Using Pig + Touch

You can bring parameter values into an editor without touching them using Pig + Touch. As the parameters haven't been touched, they won't be recorded as part of the contents of the editor. This can be useful if you want to have the parameter values in the editor in order to copy them to other fixtures.

For example, to copy parameter values from fixtures 1-5 that are on stage to fixtures 6-10 in the current editor:

1. **1 Thru 5 Pig + Touch**: select the fixtures 1-5, and bring their onstage values into the editor without touching them:

 ![Table of parameter values]

2. **Copy 6 Thru 10, Enter**: copy the parameter values to fixtures 6-10:
3. Record: the contents of the editor is recorded with only fixtures 6-10, not 1-5.

If the above example had used Touch instead of Pig + Touch, then you would have to untouch or knockout 1-5 before recording.

Tip

Values with a dark or light blue background in the Programmer or editor are recordable, while those with a white or gray background are not recordable.

15.3.8 Copying Parameter Settings

You can copy the parameter values of one fixture to another.

Important

If you copy parameter settings between fixtures of different types, only those parameters that the fixtures have in common will be copied.

Using the Command Line

To copy from the current selection:

- Copy 8 Enter: copies the parameters of the current selection to fixture 8.

To copy from specified fixtures:

- Fixture 1 Thru 4 Copy 8 Thru 11, Enter: copies the parameter settings of Fixtures 1-4 to 8-11.

To copy parameter values from the fixtures of one group to the fixtures of another group within an editor:

- Group 1 Copy Fixture Group 2 Enter: copies the parameter values of the fixtures in group 1 to the fixtures in group 2.

You can add parameter, location and destination masks to any copy command:
1 Thru 4 Intensity Copy List 3 Cue 1 Fixture 8 Thru 11, Enter : copies the intensities of fixtures 1 to 4 in the current selection to fixtures 8 to 11 in cue 1 of cuelist 3.

You can use Copy to reverse the order of values. For example, if fixture 1 is at 10%, fixture 2 at 20%, and fixture 3 is at 30%:

1 Thru 3 Copy 3 Thru 1 Enter : the fixtures will now be at 30%, 20% and 10% respectively.

Tip

When you press the Copy key, the words ‘Copy to’ appear on the command line. This is a useful reminder of the syntax of the copy command.

In the Programmer or Editor Window

You can copy fixture data by using the Copy and Paste commands: click the right-hand mouse or Trackball button on the desired cell(s) in the editor window and select Copy or Paste from the menu.

You can also use the Pig key to copy and paste selected cells:

- Pig + Copy : copy
- Pig + Record : paste

Copy Options

By default, when you copy parameter values from one fixture to another, the console will copy exactly the data from one fixture to another, including any palette references. You can optionally have the hard values from within the referenced palette copied to the destination instead of the palette references:

1. Fixture 1 : select the fixture you want to copy.
3. Allow Refs : deselect the Allow Refs button.
4. 8 : select the fixture to copy to.
5. Enter : copies the parameters of Fixture 1 to Fixture 8, converting any palette references to hard values.

Tip

You can copy a fixture to itself with Allow Refs deselected to convert palette references to hard values.
15.3.9 Restoring Default Values

You can reset parameter values to their default settings by using the . (point) key or Pig + . keys as a modifier. Default values for parameters can be set in the Edit Fixtures window.

When using the . key as a modifier, modes such as gobo rotate will be restored to default value but the current mode will remain (gobo rotate). When using the Pig + . keys as a modifier, modes such as gobo rotate will be restored to default value and default mode (index).

To restore the default value for a single parameter of the current selection:

- Press and hold the . key or Pig + . keys and turn the appropriate parameter wheel.

To restore the default values of a parameter kind for the current selection:

- Press and hold the . key or Pig + . keys and press the appropriate kind key.

To restore the default values for all parameters of the current selection:

- Press and hold the . key or Pig + . keys and press the Fixture key.

15.4 Fanning

Fanning allows you to assign a parameter across several fixtures, so that the parameter values are equally spaced. For example, if you have five fixtures all at 50% intensity, you can use fanning easily to assign intensities of 30, 40, 50, 60 and 70% across five fixtures. Note that in this example, the middle value of the five stays the same, and the end values change the most, while the other values change proportionally.

You can fan any values including parameters and timings. For example, you can use fanning with position: suppose that you have seven moving lights on an upstage position, all pointing downstage towards the audience. You could fan the Pan parameters so that the centre fixture still points downstage, and the others turn progressively out to stage left and right.

The fixture selection order is significant when fanning; see The Selection Order (p.159). The value change when fanning is always relative to its current value; if there is no current value the parameter will fan from its default value.

Tip

Choosing the initial, or ‘base’, value is important when fanning, as the parameter values cannot go below 0% or above 100%. Make sure that you leave enough of the value range for the value to fan into.

15.4.1 Using the Fan Key

To fan a parameter:
1. **1 Thru 5 @ 30, Enter**: select the fixtures and assign the intensities to 30%:

![Table of Intensities]

2. Press and hold the Fan key, whilst slowly moving the I-Wheel. The fixtures at either end of the range take the values 10% and 50%, with those in between evenly spread across the intervening range:

![Table of Intensities]

15.4.2 In the Programmer Window

To fan a parameter:

1. Select a range of cells, for example the intensity cells of Studio Colors 1 to 5.
2. **Set 10 Thru 50, Enter**: The fixtures at either end of the range take the values 10% and 50%, with those in between evenly spread across the intervening range.

You can also fan backwards; continuing the above example:

- **Set 50 Thru 10, Enter**: Studio Color 1 has an intensity of 50% and Studio Color 5 an intensity of 10%.

You can also fan several columns at once, fanning both Pan and Tilt for example.

15.4.3 With the Command Line

To fan intensities from the command line:

- **1 Thru 5 @ 10 Thru 50, Enter**: The fixtures at either end of the range take the values 10% and 50%, with those in between evenly spread across the intervening range.

You can also fan backwards:
15.4.4 Fanning Options

By default, fanning adjusts parameter values proportionally from the centre of the fixture selection. You can have fanning work in other ways:

- **Fan Normal:** As described above, the middle fixture remains unchanged, while the first and last fixtures' values change the most, in opposite directions. For example:

 | Before fanning: 30 30 30 30 30 |
 | After fanning: 10 20 30 40 50 |

- **Fan From Start:** The first fixture in the selection order remains unchanged, while the last one's value changes the most. For example:

 | Before fanning: 30 30 30 30 30 |
 | After fanning: 30 40 50 60 70 |

- **Fan From End:** The last fixture in the selection order remains unchanged, while the first one's value changes the most. For example:

 | Before fanning: 30 30 30 30 30 |
 | After fanning: 70 60 50 40 30 |

- **Fan To Centre:** the middle fixture remains unchanged, while the first and last fixtures' values change the most, in the same direction. For example:

 | Before fanning: 30 30 30 30 30 |
 | After fanning: 50 40 30 40 50 |

You can set the fanning mode from the Fanning Toolbar:

- Press and hold the Fan key to display the Fanning Toolbar; see Figure 15.11, “The Fanning Toolbar”.

All subsequent fans will follow the currently selected fanning mode, until the editor is cleared.

15.4.5 Multipart Fanning

With the command line, you can enter multipart fanning:
• **1 Thru 9 @ 10 Thru 50 Thru 10** : The fixtures at either end of the range take the value of 10%, that in the middle 50%, and the others spread between:

| 10 | 20 | 30 | 40 | 50 | 40 | 30 | 20 | 10 |

You can fan in as many parts as you want, separating values with the Thru key. Note that multipart fanning only works with the command line, not when editing values in the spreadsheet.

15.4.6 Fanning with Groupings

Grouping allows you to control the way that parameters are fanned to make complex patterns. You can group fixtures in two ways:

- **Repeat**: The repeat is the number of fixtures that are fanned before the fan is repeated. For example, fanning a selection of twelve fixtures with a repeat of three would result in four identical fan patterns (or ‘parts’), each with three fixtures in:

![Diagram of repeat fanning]

- **Buddying**: The buddying number puts the fixtures into ‘gangs’ that all take the same value. For example, fanning a selection of twelve fixtures with a buddying value of three would result in fixtures 1 to 3 having the same parameter value, fixtures 4 to 6 having the same value, and so on:

![Diagram of buddying fanning]
You can combine repeats and buddying to create complex patterns very simply. Repeats and buddying are selected from the Grouping Toolbar: press Grouping on the Main Toolbar. The toolbar will remain open to allow you to combine Grouping and Buddying; press Enter or click on the toolbar's Close button when you have made your selection.

![The Grouping Toolbar](image)

Figure 15.12. The Grouping Toolbar

The toolbar displays the current repeat and buddying size, and has buttons to increase and decrease the repeat and the buddying. There are also shortcuts for repeats of 0, 2, 3, 4 and 8, and No Buddying.

Note that grouping and buddying are only used during fanning; the grouping and buddying information is not recorded into cues and palettes, but the resulting parameter values are recorded.

Tip

By default grouping and buddying options are retained even after pressing the Clear key. To reset grouping and buddying options when Clear is pressed, enable the option in Setup → Preferences → Programming.

15.5 **Removing Values**

As well as assigning values for parameters, you will sometimes want to remove parameter values from editors. For example:

- You no longer want to use a particular fixture in a cue, scene or palette.
- You decide to have the colour of several fixtures controlled by a different cuelist on another playback. To do this, you need to remove colour parameter
values, so that they don’t take over control of the colour parameters under the LTP rule. See *HTP and LTP* (p.9).

Tip

If you want to clear the entire contents of an editor, use the Clear key.

15.5.1 **Removing Entire Fixtures from an Editor**

To remove selected fixtures from an editor (known as ‘knocking out’), press the Knockout button on the Main Toolbar. For example:

- **Fixture 1 Thru 5 Knockout**: removes Fixtures 1 to 5 from the editor.
- **Group 2 Knockout**: removes all fixtures in Group 2 from the editor.

15.5.2 **Removing Specific Parameter Types from an Editor**

You can remove specific parameter types from the selected fixtures in an editor:

- **Colour, Knockout**: Select the parameter type and press Knockout

15.5.3 **Removing Individual Parameters from an Editor**

You can remove individual parameters from the selected fixtures in an editor:

- Hold Knockout and move the relevant parameter wheel, or press the relevant button on the Slot Toolbar.
- Hold Backspace and move the relevant parameter wheel.
- Hold Backspace and press the relevant parameter type key; this gives single-handed operation.
- You can remove the values from the currently highlighted cells in the Programmer by pressing Pig + Backspace.

15.6 **Separating Parameters**

When recording a cue, scene or palette, Wholehog OS only records parameters that have been changed or touched since the last cue was recorded. See *Tracking* (p.6) and *Working with Tracking* (p.217).

However, some parameter types are treated as a single fixture ‘attribute’, so for example when you touch one of the three colour parameters of a colour mixing fixture (cyan, magenta or yellow),
the other two are automatically touched at either their current value from playback, or at their default values.

For most purposes this provides the results that you would expect but there may be situations where you want to separate the linked parameters, for example to run separate chases with the cyan, magenta and yellow parameters.

By default, Wholehog OS links all position parameters together, and all colour parameters together. You can separate linked parameter types in the Programming pane of the User Preferences window:

1. Setup → Preferences → Programming
2. Toggle separating parameters on and off by pressing the parameter type buttons; see Figure 15.13, “The Programming pane of the User Preferences window”.

![Figure 15.13. The Programming pane of the User Preferences window](image-url)
Section 16: Working with Groups

Groups are pre-recorded fixture selections, complete with selection order information. They are stored in the Group Directory; for general information on working with directories, see Working with Directories (p.108). Groups allow the quick selection of multiple fixtures, and, like ordinary fixture selections, groups can be combined and manipulated in a variety of ways.

Note that group information is only used for making fixture selections in editors, and is not recorded into palettes, cues or scenes.

To Open the Group Directory:

- Open + Group

Or:

- Group, Group

![Group Directory](image)

Figure 16.1. The Group Directory

Tip

Wholehog OS can automatically generate a useful set of groups based on the fixtures in your show: see Creating Palettes and Groups Automatically (p.137).

16.1 Recording a Group

When recording a group, only the active fixture selection is recorded, not all the fixtures currently in the editor. To record a group:

1. Select the desired fixtures in the Programmer or editor.
3. Select the destination location in the Group Directory window.

4. Alternatively, enter a number on the keypad and press Enter.

5. If the destination location is already used, you will be asked to choose an option: Insert, Merge and Replace (p.184).

When you record a group the selection order is also saved. This controls how fanning and effects are applied to the fixtures in the group, and is significant when using the Next and Back buttons; see The Selection Order (p.159), Fanning (p.173) and Working with Effects (p.253).

16.1.1 Naming a Group

You can give a group a name that will be displayed in the Group Directory window:

2. Select the group to be named.
3. Set [name] Enter : type in the name.

Tip
You can name a group, cue, scene or palette immediately after recording it by pressing the Set key. The Quickname window will open, and you can enter the name and select OK.

16.2 Using Groups in Programming

You use groups in the same way that you would use fixture selections, for example:

- **Group 1, Enter** : selects all the fixtures in Group 1.

- **Group 1 @ 50, Enter** : selects all the fixtures in Group 1 and sets their intensity to 50%.

- **Group 1 + Fixture 3 @ 50, Enter** : you can mix fixture and group selections.

One particularly useful syntax to use with groups is the / key:

- **Group 1 / Group 3** : selects only fixtures that are in both groups.
16.3 Editing Group Contents

To edit a group's contents, select the group within the Programmer or editor, make changes to the selection and re-record the group. Wholehog OS will ask you to choose from Insert, Merge and Replace (p.184). Select Replace to update the group with the new selection.

16.3.1 Removing Fixtures from Groups

You can remove the fixtures that are currently selected in the Programmer or editor from a previously recorded group. If you have a fixture selected in the Programmer or editor that is not in the group, that fixture is ignored.

For example, if you have a group containing fixtures 1-5, and you want to remove Fixture 2:

1. **Fixture 2, Enter**: select the fixture you want to remove.
2. **Record, Remove**: the Remove button is on the Record Options Toolbar at the bottom of the right-hand screen.
3. **Group 5, Enter**: removes Fixture 2 from Group 5.

16.4 Deleting Groups

To delete a group:

1. **Group 1 Delete**: deletes group 1.
2. Click OK to confirm the delete.

Or from the group directory:

1. Press and hold Delete whilst selecting the group to be deleted from directory.
2. Release the Delete key. A dialog will appear asking you to confirm the delete.
3. Click OK.

You can also delete several groups at once:

1. **Group 1 Thru 5 Delete**: deletes groups 1 through 5.
2. Click OK to confirm the delete.

Or from the group directory:

1. Press and hold Delete whilst selecting all the groups to be deleted from directory.
2. Release the Delete key. A dialog will appear asking you to confirm the delete.
3. Click OK.

Tip
If you prefer not to be asked to confirm the delete action, select Don't Ask Me Again in the confirmation window. You can reenable the confirmation by going to Setup → Preferences → Programming and selecting Confirm before deleting directory items.

16.5 Copying and Moving Groups

To make a copy of a group:

- **Group 1 Copy Group 2 Enter** : copies the contents of Group 1 to Group 2.

Similarly, to move a group to a new location:

- **Group 1 Move Group 2 Enter** : moves Group 1 to Group 2.

If the destination group already exists, you will be asked to choose an option: *Insert, Merge and Replace* (*p.184*).

To copy parameter values from the fixtures of one group to the fixtures of another group within an editor:

- **Group 1 Copy Fixture Group 2 Enter** : copies the parameter values of the fixtures in group 1 to the fixtures in group 2.

Similarly with masking options:

- **Group 1 Intensity Copy Fixture Group 2 Enter** : copies the intensity values of the fixtures in group 1 to the fixtures in group 2.

16.6 Insert, Merge and Replace

When recording or copying a group, if the destination location already has a group recorded in it, you will be prompted with record options of Insert, Merge or Replace.

If you are moving a group, only the Insert option is available.

- **Insert**: creates a new destination group. The new group will be assigned a free location just before the one chosen, using a point number if necessary.

- **Merge**: Incorporates the new information into the destination group.

- **Replace**: Overwrites the group information in that destination.
Tip

If you know that you are about to record, copy or move a group to an existing destination, you can pre-select Insert, Merge or Replace from the Record Options Toolbar. This appears after you press the Record, Copy or Move keys.
Section 17: Working with Palettes

Palettes allow intensity, position, colour and beam parameters to be recorded as easily accessible ‘building blocks’ to be used when programming. Palettes are stored in a directory accessed by holding the Open key and a parameter type key:

Alternatively:

- Colour, Colour

For general information on working with directories, see Working with Directories (p. 108).

![Figure 17.1. The Colour Directory](image)

When you use a palette to assign parameter values in the Programmer, and then record the contents of the Programmer as a scene or cue, Wholehog OS records a reference to the palette rather than numerical values for the parameters. During playback, the console refers to the parameter values stored within the palette when outputting cue data to the stage. Because of this referencing, when you modify a palette’s content, the cues and scenes that were programmed using it will, in effect, be automatically updated with the new values. The palette is said to be ‘referenced’ in the cue. This is a very powerful feature that allows you to make global changes to the show very simply and quickly, rather than having to re-programme every cue individually.

If you wish to make a palette that is just a programming tool, where later changes to the palette will not cause cues, scenes and other palettes recorded with it to be updated, then you can use direct palettes. With direct palettes, actual parameter values are placed into cues, rather than references. See Direct Palettes (p. 197).

Tip

Wholehog OS can automatically generate a useful set of palettes based on the fixtures in your show: see Creating Palettes and Groups Automatically (p. 137).
17.1 **Recording a Palette**

By default, Wholehog OS records only parameters of a single type (intensity, position, colour, beam) into a palette. Palettes of each type are held in the relevant directory. You can optionally record more than one parameter type in a palette; see *Recording with Specified Masking (p.194)*.

Also by default, Wholehog OS records the appropriate parameter values of all fixtures in the Programmer or editor, not just those of the selected fixtures. To only record from selected fixtures, see *Recording Only Selected Fixtures (p.196)*.

To record, for example, a position palette:

1. In the Programmer or editor, assign the position parameters of the desired fixtures as you want them in the palette.
3. [Palette 2]: choose a location in the directory.

Or, using the command line:

- Record Position 2 Enter

If you leave out the palette location:

- Record Position, Enter

the palette will be recorded in the next available location.

If the destination palette already exists, you will be asked to choose an option: *Insert, Merge and Replace (p.198)*.

17.1.1 **Naming a Palette**

You can give a palette a name that will be displayed in the Palette Directory:

2. Check that the Guard button is selected, so that you don't accidentally activate a palette when pressing its button in the directory.
3. Select the palette to be named by pressing its button in the directory.
4. Set [name] Enter: type in the name.

Tip

To name a palette immediately after recording it, pressing the Set key will open a Quickname window. Enter the palette name and select OK.
17.2 Using Palettes in Programming

In the Programmer or editor, you can apply a palette by selecting it from its directory window. The palette will be applied to the current fixture selection, as long as the palette contains parameter information for the selected fixtures. Doing so assigns the parameter value to be a reference to the palette. A palette that puts all Studio Colors in the rig to deep red will therefore apply this immediately to any Studio Colors that are in the current selection; see Figure 17.2, “Example of Parameters set to reference a Palette”.

For example:

2. 3 Thru 5 : select the fixtures.

Or, using the command line:

- 3 Thru 5 Colour 2 Enter

![Figure 17.2. Example of Parameters set to reference a Palette](image)

17.3 Editing Palette Contents

![Figure 17.3. The Palette Editor window](image)
You can change the parameter values that are applied when a palette is referenced during playback by editing the palette's contents in an editor window, see Figure 17.3, “The Palette Editor window”. For example, to open Colour Palette 2 for editing:

3. Alternatively using the command line : Colour 2 Open
4. Press the Edit button in the editor window to select this as your current editor.

Within the editor, you can assign fixture parameters and timing in the same way as in the Programmer; see Individual Parameter Timings (p.232). Press Update after editing to save the changes to the palette. For more information on working with editors, see Working with Editors (p.113).

Tip
When you open a palette for editing, you may only appear to see one fixture when you recorded several. This is due to the way palettes can be ‘global’, with a single set of parameter values that can be applied to any fixture; see Palette Contents: Global, Per Fixture Type, and Per Fixture (p.192).

17.3.1 Updating Palettes with Different Parameter Types

Palettes contain one or more parameter types. If you edit a palette and add values for parameters of a type that was not previously in the palette, and then update the palette, these values will not be stored. If you want to change the parameter types that a palette contains, you need to select the type from the Palette Masking Toolbar:

For example, suppose that you wanted to add a gobo (a beam parameter) to the existing Colour Palette 2:

3. Press the Edit button in the editor window to select this as your current editor.
4. Select the B (Beam) button on the Palette Masking Toolbar.
5. Edit the fixture parameter values to assign the required gobo.
6. Press Update to save the changes.
17.4 Deleting Palettes

Important
Deleting a palette will remove all references to the palette that have been recorded in cues, scenes and other palettes, and replace the references with numerical parameter values. Creating a new palette in the same location will *not* replace the references, which are removed once the palette is deleted.

To delete a palette using the command line:

2. Click OK to confirm the delete.

Or, from the palette directory:

1. Press and hold Delete whilst selecting the palette to be deleted from directory.
2. Release the Delete key. A dialog will appear asking you to confirm the delete.
3. Click OK.

Tip
If you prefer not to be asked to confirm the delete action, select Don't Ask Me Again in the confirmation window. You can reenable the confirmation by going to Setup → Preferences → Programming and selecting Confirm before deleting directory items.

17.5 Copying and Moving Palettes

To make a copy of a palette in a new location:

1. Open + Colour: open the Colour directory.
2. Make sure that the Guard button is pressed, so that you do not accidentally apply palettes when trying to select them.
3. Select the palette that you want to copy by pressing its button in the directory.
4. Press and hold the Copy key.

5. Press the button of the location in the directory you want to copy the palette to.

Or, using the command line:

- Colour 2 Copy Colour 3 Enter: copies the contents of Colour Palette 2 to Colour Palette 3.

- Group 5 Colour 2 Copy Colour 3 Enter: copies fixtures that are in Colour Palette 2 and Group 5 into Colour Palette 3.

Similarly, to move a palette to a new location:

- Colour 2 Move Colour 3 Enter: moves the contents of Colour Palette 2 to Colour Palette 3, leaving 2 empty.

If the destination palette already exists, you will be asked to choose an option: Insert, Merge and Replace (p.198).

Tip
References to palettes refer to the palette, not its location in the directory. If you move a palette from location 3 to location 4, references to the palette still refer to it in its new location, not to another palette you put in location 3.

17.6 Record Options

17.6.1 Palette Contents: Global, Per Fixture Type, and Per Fixture

When you record a palette, parameter values can be recorded as global, per fixture type, or per fixture. The three kinds work in different ways when you apply the palette to fixtures during programming:

- **Global**: the palette's parameter values are applied to all selected fixtures that have that parameter. For example, a colour palette containing hue and saturation parameters is applied to all selected fixtures that have hue and saturation.

- **Per Fixture Type**: the palette's parameter values are applied to all fixtures of that type. For example, a palette containing parameter values for Studio Color 575s will only be applied to selected Studio Color 575s.

- **Per Fixture**: the palette's parameter values are applied only to those specific fixtures that are both in the palette and selected in the editor. For example, a palette containing parameter values for Studio Color 575 1 will only be applied to that fixture (and only then if it is selected).
By default, the following rules determine how the palette is recorded:

1. Position palettes are always recorded Per Fixture.

2. If all the fixtures to be recorded have exactly the same parameter values, then the palette is recorded as Global.

3. Otherwise the palette is recorded Per Fixture.

In the palette's editor, the parameter values in a Global palette will appear as All Types. Similarly, a palette with Per Fixture Type values will show them grouped by fixture type; see Figure 17.4, “A Palette with Global Parameter Values”, Figure 17.5, “A Palette with Per Fixture Type Values” and Figure 17.6, “A Palette with Per Fixture Values”. Make sure that you have aggregation turned on; see Aggregation (p.106).

Figure 17.4. A Palette with Global Parameter Values

Figure 17.5. A Palette with Per Fixture Type Values
You can override the default settings using the Record Options Toolbar; for example to record a single fixture's parameter values as per fixture:

1. Assign the parameters of the fixture as required.
2. Press Record.
3. The Record Options Toolbar will appear on the bottom of the right-hand touch screen. Select More, then Per Fixture; see Figure 17.7, “The More... Section of the Record Options Toolbar”.
4. Press the key to choose the palette type, for example Colour. The Palette Directory will open.
5. Select the palette location by pressing it in the Palette Directory window.

Similarly, to force a palette with one of each fixture type to be recorded as Per Fixture Type rather than the default Per Fixture, use the Per Fixture Type button on the Record Options Toolbar.

Forcing a palette to be Per Fixture Type can be useful if you want a palette that contains programming for more than one type of fixture, but that you can apply to any fixture of a type included in the palette. For example, you want to create a ‘red’ palette that can be applied to both Studio Colors and Studio Spots. If you select the first Studio Spot and make red then select the first Studio Color and make red (with different parameter values) and record this as palette, it will by default be by fixture and work only for those two fixtures. However if you select Per Fixture Type when recording, then the palette will work for all Studio Spots and all Studio Colors, assigning them the same values as was used to create the palette.

17.6.2 Recording with Specified Masking

Wholehog OS records palettes through layers of masking; the mask determines which parameter types of the selected fixtures are included in the palette. By default palettes record just intensity,
position, colour or beam information according to the palette type (that is, they mask out all other parameter types. You can remove masks to record more than one parameter type in a palette, for example combining colour and beam information into one palette.

The Palette Directory will display the parameter types included in each palette, indicated by I for intensity, P for position, C for colour, and B for beam; see Figure 17.8, “Example of Palettes containing different parameter types”.

![Figure 17.8. Example of Palettes containing different parameter types](image)

Masking Using the Record Options Toolbar

To specify masking when recording a palette using the Record Options Toolbar:

1. Assign the parameters of the fixtures as required.
2. Press Record. The Record Options Toolbar will appear at the bottom of the right-hand touch screen; see Figure 17.9, “The Record Options Toolbar”.
3. Select the parameter types to be included in the palette by toggling on or off the buttons Use I for intensity, Use P for position, Use C for colour, Use B for beam, Use E for effects, Use T for timing.
4. Press a key to choose the palette type, for example Colour. The Palette Directory will open.
5. Select the palette location by pressing it in the Palette Directory window.

![Figure 17.9. The Record Options Toolbar](image)

Masking Using the Command Line

When recording a palette using the command line, choose the parameters to include before the Record command:
• Colour Position Record Colour 3 Enter : records the colour and position parameters of the Programmer or editor contents into Colour Palette 3.

Recording Only Selected Fixtures

By default, all fixtures currently in the Programmer or editor are recorded. To record only selected fixtures:

1. Fixture 2 : select the fixture(s) you want to record in the palette.
2. Record
3. On the Record Options Toolbar select : More → Selected
4. Position, Enter : records only the position values for fixture 2 into the next available position palette, rather than values for all fixtures in the Programmer.

17.6.3 Palette Timing

Parameter timings that have been assigned in the Programmer or editor can be recorded when you record a palette, and applied when the palette is used. By default, timings are not included in a palette; to include them, you should include time by unmasking it during recording; see Masking Using the Record Options Toolbar (p.195).

You can also assign an overall palette timing when recording the palette. For example, to record a colour palette with a fade time of 6 seconds:

1. Assign the parameters of the fixtures as required.
2. Time 6 Enter : assign their fade time to 6 seconds.
3. Colour Time Record Colour 2 Enter : record colour and timing information into Colour Palette 2.

You can also edit timings in the palette's editor. See Editing Palette Contents (p.189).

17.6.4 Reference Palettes

When you record a cue using a palette, a reference to the palette is recorded instead of a numerical value for the parameters. Similarly, you can record palettes using other palettes, so that the new palette contains references rather than numerical values. A palette recorded in this way is known as a reference palette, and is marked in the palette directory window by a icon.

Reference palettes are useful when you want to create palettes to use as simple ‘building blocks’ which you then make more complex building blocks from. For example, you might create a position palette that focuses some Studio Spot 575s onto the lead singer, and further position palettes that position other fixtures onto the remaining band members. You could then make an ‘All Band’ position palette with one fixture lighting each band member, in which each fixture references another palette, instead of having parameter values. If the drum riser was later moved, you could adjust the position palette that focused onto it, and the change would not only be updated in all scenes and cues programmed with that palette, but also all programming done with the ‘All Band’ palette.
By default, palettes are not recorded as reference palettes; any fixture parameters assigned using another palette is recorded as a numerical value. If you want to record a palette as a reference palette, select the Allow Refs record option:

1. Assign the parameters of the fixtures using other palettes as required.
2. Press Record.
3. The Record Options Toolbar will appear at the bottom of the right-hand touch screen. Select More, then press the Allow Refs button.
4. Press a key to choose the palette type, for example Colour. The Palette Directory will open.
5. Select the palette location by pressing it in the Palette Directory window.

17.6.5 Direct Palettes

Normally, when you use a palette to assign parameter values for recording in a cue or scene, a reference to the palette is inserted rather than numerical values. To insert numerical values instead of references, use direct palettes. Cues and scenes recorded using direct palettes will not update if the palette is later changed, because they contain ordinary parameter values rather than references to a palette.

You can use a palette as a direct palette on a one-off basis as you programme, or you can assign it to always act as a direct palette; a direct palette is shown by a symbol in the directory window.

To temporarily use an existing palette as a direct palette when calling it into the Programmer or editor:

- 1 Colour 1: the @ key indicates that the palette should be used in direct mode.

To create a direct palette:

1. Assign the fixtures as required.
2. Record, More: the More button is on the Record Options Toolbar at the bottom of the right-hand screen.
3. As Direct
4. [Position 2], Enter: choose a location for the palette.

To convert an existing palette to a direct palette:

1. Open + Colour: open the appropriate Palette Directory.
2. Set the directory window to spreadsheet view by pressing the button.
3. Select the Is Direct cell for the palette you want to change, and press Set to toggle the value to Yes.
Note that converting a palette to a direct palette will not alter any programming done previously using the palette; cues and scenes already recorded will still contain references to the palette. Only subsequent programming will be effected.

17.7 **Insert, Merge and Replace**

When recording or copying a palette, if the destination location already has a palette recorded in it, you will be prompted with record options of Insert, Merge or Replace.

If you are moving a palette, only the Insert option is available.

- **Insert**: creates a new destination palette. The new palette will be assigned a free location just before the one chosen, using a point number if necessary.

- **Merge**: incorporates the new information into the destination palette. If the same fixtures and parameters are in both palettes, the new values will replace the old.

- **Replace**: overwrites the palette information in that destination.

Tip

If you know that you are about to record, copy or move a palette to an existing destination, you can pre-select Insert, Merge or Replace from the Record Options Toolbar. This appears after you press the Record, Copy or Move keys.
Section 18: Advanced Programming

18.1 Selecting from What is Onstage

You can select fixtures from what is on stage using the Live key. Fixtures are considered to be on stage if their intensities are non-zero. For example:

- **Live Enter**: selects all fixtures that are on stage.

You can apply a mask to the selection. This allows you to select all fixtures that are onstage that are assigned to particular values or palettes. For example:

- **Live @ 50**: selects fixtures that are on stage at 50%.
- **Live @ 50 Thru 80**: selects fixtures that are on stage at 50% to 80%.
- **Live @ 0**: selects fixtures that are at 0%.

Using a palette as a mask:

- **Live [Blue]**: selects fixtures that are on stage that are at their ‘Blue’ palette settings.

You can use the Live and / keys together to select fixtures that are both live on stage and in a specified fixture selection:

- **Live / 1 Thru 5**: selects fixtures that are in the range 1 to 5 that are live on stage.
- **Live / Group 1**: selects fixtures that are in Group 1 that are live on stage.

Note that in all the above examples using the Live key only selects fixtures; it does not alter values in the Programmer or editor.

Tip

Fixtures that do not have an intensity parameter such as a colour scroller are always considered live on stage and will be selected when using the Live key.

18.2 Bringing Parameter Values Into the Programmer

Sometimes you will end up with a look onstage or in a cue, scene or palette that you want to reuse in further programming. There are various ways in which you can bring those fixtures and parameter values into the Programmer or editor.
18.2.1 **Suck**

You can use Suck to assign fixture parameters to the values that they currently have ‘on stage’. It doesn't assign parameters that are at their default value, or that belong to fixtures with an intensity value of zero. This helps to ensure that you don't have redundant values in the cues that you create, which can cause problems later by blocking values that should track through. The Suck button is located on the Main Toolbar.

You need to have fixtures selected before using the Suck command. For example, if Group 3 contains Studio Color 575s 1 to 3:

- **Group 3 Suck** : assigns the fixtures in Group 3 to their current on stage values:

<table>
<thead>
<tr>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio Color 575</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio Color 575</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Similarly, you can apply this to palettes, scenes and cues, using the Live key to bring in fixtures and their parameter values that are on stage:

- **Live [Red Palette], Suck** : fixtures on stage assigned to Red Palette are brought into the Programmer:

<table>
<thead>
<tr>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio Color 575</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Reference

Section 18: Advanced Programming
Or, you can use a mask to bring particular parameter type values from specific palettes that are on stage. For example, to bring the intensity values of [Red Palette] into the editor:

- **Live [Red Palette], Intensity Suck**: the intensity values of fixtures on stage assigned to Red Palette are brought into the Programmer:

 - **Live [Red Palette]**

18.2.2 **Using Live and Touch**

Using Live and Touch together touches all parameters that belong to fixtures that are at non-zero intensity on stage, including parameters at their default values. This is similar to suck, except that it will bring all values into the Programmer or editor, including those that are at their default values. The Touch button is located on the Main Toolbar.

For example, if Studio Color 575s 1 to 3 are in the output with an intensity of 100%:

- **Live Touch**: brings all the parameters of Studio Color 575s 1 to 3 into the Programmer, not just the intensity values (as suck would):
You can select the parameter types to touch:

- **Live Colour Touch**: only the colour parameters are touched.

18.2.3 Using Copy to Bring Values into an Editor

You can bring parameter values from a palette, scene or cue into an editor such as the Programmer using Copy:

- **Cue 1 Copy, Enter**: copies the contents of Cue 1 of the currently chosen cuelist into the current editor.

You can choose which fixtures or parameter types are copied into the Programmer. For example:
- **Cue 1 Position Copy, Enter**: copies only the position values from Cue 1 into the current editor.

18.3 Highlight and Lowlight

Pressing the Highlight key temporarily adjusts the selected fixtures to ‘open white’, with intensity at full and all other parameters at their default settings. This function can be useful when you want to see the beam of a fixture on a lit stage, when assigning focus positions for example. Highlight only changes the parameter values in the output, not in the current cue or in the Programmer or editor, and highlight has the highest priority when the console determines a parameter’s output value.

Highlight will remain active until you press the Highlight key again, and you can use the **Next** and **Back** keys to highlight in turn each fixture in the current selection.

You can release each parameter from highlight by adjusting its value in the Programmer or editor, letting you modify parameters whilst keeping the fixture beam as visible as possible. For example, suppose that you have a Studio Spot 575 subtly lighting a part of the stage setting with a dark blue breakup gobo, softened using the frost parameter and with the iris controlling the beam size. The piece of set that the Studio Spot is lighting has been moved, and you need to refocus it while keeping the rest of the lighting state on stage so that rehearsals can continue. To do this using Highlight:

1. Select the Studio Spot in the Programmer.
2. Press the Highlight key. The Studio Spot will retain its position on stage, but the intensity will go to full, the colour to white, the gobo and frost to open, and the iris to 100%, so that you can see the beam clearly on the lit stage.
3. Adjust the pan and tilt parameters to position the Studio Spot as required.
4. Adjust the iris parameter to give the correct beam size.
5. Press the Highlight key again to release the colour, gobo and frost parameters from Highlight, so that they return to their original programmed values. The values for pan, tilt and iris retain their new values in the Programmer.
6. Press **Update** and **OK** to record the changes in the appropriate cue; see **Auto Update** (p.204).

18.3.1 Customising Highlight

By default, highlight brings intensity to full, with all colour and beam parameters at their default values. However, you can use a palette to assign the highlight values for each parameter of each fixture. This can be useful as the default highlight values for some parameters may not be what you want; for example, you may prefer to leave zoom, focus and iris settings unaltered by Highlight so that you can see the programmed beam size and edge quality.
To assign a pre-existing palette to be the highlight palette, right-click it in the palette directory and select it as the highlight palette. The highlight palette is shown by the ☑ icon in the palette directory window.

Tip
You can use masking when creating the highlight palette to ensure that all the required parameter types are included; see *Recording with Specified Masking* (p.194).

18.3.2 Lowlight

By default, the parameters of fixtures that are not selected when you use highlight remain at their current output values. You can customise the output values of these parameters during highlight by creating a lowlight palette. For example, you could create a lowlight palette that sets the intensity of all fixtures to 30%, to give the highlighted fixture greater contrast.

Note that lowlight only affects parameter values of the non-selected fixtures in the current editor. Parameter values being output by playbacks will not be affected.

To assign a pre-existing palette to be the lowlight palette, right-click it in the palette directory and select it as the lowlight palette. The lowlight palette is shown by the ☑ icon in the palette directory window.

Tip
You can use masking when creating the lowlight palette to ensure that all the required parameter types are included; see *Recording with Specified Masking* (p.194).

18.4 Auto Update

When you are programming a complex show, the look on stage may be built up from cuelists and scenes on several masters. You can change the look by assigning fixture parameter values in the Programmer, but it is difficult to know which cue or scene is contributing which values to the total on stage. Wholehog OS’s Auto Update feature automatically suggests the appropriate cues, palettes and scenes to merge the changes into, allowing you to choose how the updates are performed.
When you have finished editing in the Programmer you can merge the parameter values into the currently playing cues, palettes and scenes by pressing the Update key. The Auto Update window will open, showing which cuelists, cues, palettes and scenes are contributing to the look on stage so that you can choose which to update.

For cuelists, you have several choices:

- Either update the current cue in the cuelist, or track the programming backwards so that the new values are merged into the last cue with a hard value for that parameter; see Tracking Values Backwards When Recording (p.218).
- If you have existing programming that refers to a palette, you can choose to update the palette instead of adding new parameter values to a cue. In this case, these updates will be performed first, and anything left in the Programmer after this will be used to update the selected cue or Track Backwards.

For scenes, you have the option to merge the programming into the scene, or into the palettes that are referred to in that scene.

Once you have chosen your options, press OK to perform the update. Note that the parameter values remain in the Programmer.

Tip

If there is no playback on stage when you press Update, the Auto Update window will not appear and the Update key press is ignored.
When you press the Update key, the Update Toolbar will also appear; see Figure 18.2, “The Update Toolbar”. This allows you to select which parameter types are updated, whether changes should track forwards, and whether references should be allowed when updating palettes. See Recording with Specified Masking (p.194), Stopping Values from Tracking Forward (p.219) and Reference Palettes (p.196).

Figure 18.2. The Update Toolbar

18.5 Editing Discreetly

It is often useful to make changes to parameter values discreetly, or without them appearing on stage at all; during a rehearsal or performance for example. To do this, use Wholehog OS's Fade Changes and Blind functions.

18.5.1 Fade Changes

If you select the Fade Changes button in an editor window, any changes you make will appear on stage over the current time settings for the changed parameters. For example, if you have intensity values in the Programmer with a fade time of ten seconds, and you select all of the fixtures and press @ 0 Enter, all of the lights would fade to 0 over 10 seconds. This is useful for making changes on the fly during a performance.

Parameters that don't have timing values in the Programmer will fade in the default time, which you can assign in the Default Timing pane of the User Preferences window:

- Setup → Preferences → Default Timing

Press the Fade Changes button again to revert to having parameter values appear in the output instantly.

To view and assign time values for parameters, see Individual Parameter Timings (p.232).

Tip

You can set a trackball key turn Fade Changes on and off; see Trackball Keys (p.65).

18.5.2 Blind

Blind mode allows you to continue programming and editing cues, groups, palettes and scenes without changing the onstage parameter values of fixtures. The Blind key is located above the Trackball; when in blind mode, the Blind key will illuminate.

Note that when you turn off blind mode all parameter values that you have changed in the Programmer or editor will instantly appear on stage.
To exit blind mode gracefully, hold down the Pig key while pressing Blind; parameters will fade to their new values in the assigned or default fade time. Alternatively, select Fade Changes in the editor you are using prior to turning blind on or off.

Tip
Using Pig + Blind on Wholehog OS is equivalent to using the Try Cue key on the Wholehog II.

18.6 Parking

Sometimes it is useful to lock certain parameter values of fixtures independently from programming, playback and the Grand Master. For example, you might want to lock a particular dimmer at a certain level as a working light, or point a fixture to provide light for maintenance whilst a rehearsal or programming is in progress. Park is also helpful for dealing with a fixture malfunction, locking its pan and tilt so that it doesn't make a noise as it tries to move during the show.

Parking holds a fixture's parameters on stage, but still allows you to edit the data in the Programmer or other editors.

To park fixture parameter values:

1. **Fixture 1 @ 50**: Select fixture(s) and assign the parameter(s) you wish to park.

2. **More → Park**: Select Park from the More options of the Main Toolbar.

To unpark fixtures, select the fixtures, set any value for the parked parameters, and hold the Pig key while pressing Park.

Both the park and unpark commands will accept a parameter mask on the command line, for example:

- **Position Park**: parks only position parameters of the selected fixtures.

18.6.1 Viewing and Editing What is Parked

You can view which fixtures have parked parameters in the Fixture window and the Output window, and you can view and edit parked parameters in the Parked Output window. Parked parameters are also indicated in the Wheels Toolbar.

The Fixture Window

To view which fixtures have parked parameters in the Fixture window:

- **Open + Fixture**: the Fixture window opens; see **Figure 18.3, “The Parked column of the Fixture window”**.
The Output Window

Parked parameters are shown in the Output window with black text on an orange background. When the Output window Source view is selected the word ‘Parked’ is displayed.

The Parked Output Window

You can view and modify the parked settings of fixtures in the Parked Output window; see Figure 18.4, “The Parked Output window”. To open the Parked Output window:

- Open + Parked: the Parked button is on the toolbar that appears when you press the Open key.

Within this window you can edit parameter values in the same way as in any editor. You can knockout fixtures or parameter values to stop them being parked, or add or modify parameter values to park them.
The Wheels Toolbar

Parked parameters are shown in the Wheels Toolbar with an orange background or hatch pattern.

- **Solid orange background**: all selected fixtures have the parameter on this wheel parked.

- **Cross Hatch orange background**: all selected fixtures have a parameter parked that prevents controlling the parameter on this wheel. For example, if Hue is parked, Cyan, Magenta, and Yellow will display with a cross hatch pattern on the Wheels Toolbar.

- **Diagonal line orange background**: some of the selected fixtures have the parameter on this wheel parked.
Section 19: Working with Cues

Every cue created on Wholehog OS is given a number and assigned to a cuelist. A cue number is specific to the current cuelist, not the entire console, so there can be a Cue 1 for Cuelists 1, 2 and 3. For more on cuelists, see Working with Cuelists (p.245).

You can refer to a cue either by its cuelist or by the master it is currently on:

- **List 1 Cue 2**: refers to Cue 2 of Cuelist 1.
- Alternatively, you can use the / key: **List 1 / 2**
- **Cue 1 / 2**: refers to Cue 2 on Master 1.
- **Cue 1**: if you don't specify a cuelist or master, the currently chosen master is assumed.

19.1 Recording a Cue

To record a look created in the Programmer or editor as a cue within a cuelist, you need to specify a cuelist and cue number to record to. If the cuelist does not yet exist, Wholehog OS will create it automatically.

For example, to record Cue 4 into Cuelist 2:

- **Record List 2 Cue 4 Enter**

19.1.1 Recording to a Cuelist on a Master

You can choose a master rather than a cuelist when recording a cue. This will record the cue to the cuelist currently attached to the chosen master, or create a cuelist if it doesn't exist. For example:

1. Press the Choose key above Master number 10. The Choose key will light up to show that Master 10 is the chosen master.
2. **Record 1 Enter**: records Cue 1 in the cuelist attached to Master 10, creating it if necessary.

To record more cues:

- **Record 1.5 Enter**: inserts a new cue numbered 1.5 into the cuelist on the currently chosen master.
- **Record Enter**: appends the cue to the end of the cuelist attached to the currently chosen master.
• Record Choose: appends the cue to the end of the cuelist of the selected master. This allows the current master to remain chosen while recording cues onto other masters.

19.1.2 The Contents of the Programmer after Recording a Cue

When you record a cue, the values remain in the Programmer, but the background colour changes from blue to grey. This indicates that the parameter values in the Programmer are no longer touched, and so are available for recording to another cuelist, but not to the same cuelist. You can keep the values in the Programmer to act as the basis for the next cue on the same list, but because of tracking, only the changed parameter values will be recorded. For an overview of tracking, see Tracking (p.6).

19.1.3 Insert, Merge and Replace

When recording, copying or moving a cue, if the destination location already has a cue recorded in it, you will be prompted with record options of Insert, Merge or Replace:

• Insert: creates a new destination cue. The new cue will be assigned a free location lower than the one chosen, using a point number if necessary.

• Merge: Incorporates the new information into the destination cue. If the same fixtures and parameters are in both cues, the new values being merged will take priority.

• Replace: Overwrites the cue information in that destination.

If you are copying a cue, all three options are available. If you are moving a cue, only the Insert option is available.

Tip

If you know that you are about to record, copy or move a cue to an existing destination, you can pre-select Insert, Merge or Replace from the Record Options Toolbar. This appears after you press the Record, Copy or Move keys.

19.1.4 Numbering Cues

If you leave out the cue number when recording cues, Wholehog OS will give the cue the next whole number in the list. If you specify a cue number, you can use numbers with up to five digits before the decimal and four digits after; for example: 11111.1111. This can be useful to insert cues between previously recorded ones.

You can later renumber a complete cuelist; see Renumbering Cues within a Cuelist (p.215).

19.1.5 Naming Cues

You can give a cue a name that will be displayed in the Cuelist window and on the Playback Bar:
1. **Open + Choose** : opens the Cuelist window of the selected master.

2. Select the cue's name cell.

3. **Set [name] Enter** : type in the name.

Tip

To name a cue immediately after recording it, press the Set key. This will open a Quickname window. Enter the cue name and select OK.

19.2 Record Options

19.2.1 Recording Selected Fixtures Only

Normally, recording a cue records the total contents of the Programmer or editor, but you can choose to record only the currently selected fixtures. For example:

1. Select the fixtures that you want to record.

2. **Record, More** : the More button is on the Record Options Toolbar at the bottom of the right-hand screen.

3. **Selected** : press Selected on the Record Options Toolbar.

4. **Choose** : records the selected fixtures as a new cue in the cuelist on the selected master.

19.2.2 Removing Fixtures and Parameter Values from Cues

You can remove the contents of the Programmer or editor from a previously recorded cue. For example, you might have made changes to a cue, and you want the changes to track through subsequent cues (see Tracking (p.6) for an explanation of tracking). To remove parameter values:

1. Ensure that the parameters that you want to remove are in the Programmer. The parameter values do not matter, only that the parameters have values.

2. **Record, Remove** : the Remove button is on the Record Options Toolbar at the bottom of the right-hand screen.

3. **Cue 5, Enter** : removes the selected parameter values from Cue 5.

To remove a whole fixture ensure that all parameters are selected. You can do this by selecting the fixture and pressing the Touch button on the Main Toolbar.
19.3 Deleting Cues

To delete a cue:

1. **Cue 1 Delete**: deletes Cue 1 in the currently chosen cuelist.
2. Click OK to confirm the delete.

Or:

1. **List 1 Cue 1 Delete**: deletes cue 1 in cuelist 1.
2. Click OK to confirm the delete.

Tip

If you prefer not to be asked to confirm the delete action, select Don't Ask Me Again in the confirmation window. You can reenable the confirmation by going to Setup → Preferences → Programming and selecting Confirm before deleting directory items.

You can delete a range of cues:

1. **List 1 Cue 1 Thru 4 Delete**: deletes Cues 1 to 4 in Cuelist 1.
2. Click OK to confirm the delete.

Tip

To delete a cue ‘cue only’, so that changes caused by deleting the cue don’t track through to later cues, see Stopping Changes from Tracking Forward when Deleting a Cue (p.220).

19.4 Copying and Moving Cues

Tip

Copying or moving cues affect hard values only; the cue you wish to copy/move may also contain tracked values that create the current on-stage state. If you wish to copy this look rather than just changes made by the current cue, use Copy and Move with State; see Using State (p.221).

19.4.1 Copying Cues

To make a copy of a cue in the same cuelist:
1. Make sure that the cuelist you want to work with is on the currently chosen
master.

2. **Cue 1 Copy Cue 2 Enter** : copies the contents of Cue 1 to Cue 2.

To copy in a cuelist other than the chosen one, or to copy between cuelists, specify the cuelist
with the List key. For example:

- **List 1 Cue 1 Copy List 2 Cue 2 Enter** : copies the contents of Cue 1 of
 Cuelist 1 to Cue 2 of Cuelist 2.

To copy a range of cues:

- **List 1 Cue 1 Thru 4 Copy List 2 Cue 2 Enter** : copies the contents of cues
 1 to 4 of Cuelist 1 to Cuelist 2, starting at Cue 2.

If the destination cue(s) already exist, you will be asked to choose an option: *Insert, Merge and
Replace (p.212).*

19.4.2 Moving Cues

To move a cue to a new location:

- **Cue 1 Move Cue 2 Enter** : moves the cue from 1 to Cue 2, effectively remov-
 ing Cue 1.

If the destination cue(s) already exist, you will be asked to choose an option: *Insert, Merge and
Replace (p.212).*

19.5 Renumbering Cues within a Cuelist

If your cuelist has many point cues (1.2, 1.5, 2.5, etc.) or if cues have been deleted, you may
wish to renumber the cues so that they are all whole numbers. You can renumber cuelists using
the Renumber button; press More on the Main Toolbar:

- **Renumber, Choose** : renumber cues in the cuelist on the selected master,
 starting at 1 and increasing by 1.

- **List 1 Cue 3 Thru Renumber, Enter** : renumber all cues from Cue 3 upwards
 in Cuelist 1, starting at Cue 3 and increasing by 1.

- **List 1 Cue 3 Thru 10 Renumber, Enter** : renumber Cues 3 through 10 in
 Cuelist 1, starting at Cue 3, finishing at Cue 10, with other cue numbers equally
 spaced between.

Alternatively, you can specify the range of new numbers to be given:

- **List 1 Cue 3 Renumber 5, Enter** : renumber cue 3 as cue 5, in cuelist 1.
• **List 1 Cue 3 Thru 10 Renumber 20, Enter**: renumber cues 3 through 10, in cuelist 1, with new numbers starting at 20. The rest of the new numbers will have the same order and spacing as before.

• **List 1 Cue 3 Thru 10 Renumber 20 Thru 30, Enter**: renumber cues 3 through 10 in cuelist 1, starting at 20, finishing at 30, with other cue numbers equally spaced between.

Note that renumbering does not move cues within the cuelist; if you try to renumber Cue 5 as Cue 3, you will get an error message. You should use Move for this purpose; see *Copying and Moving Cues* (p.214).

> **Important**

Using Renumber will affect the number column and numeric entries in the Name column. Also, renumber will not rewrite macros or links that refer to renumbered cues; you will need to update these manually.

19.6 Editing Cue Contents

You can edit the contents of a cue in an editor window: see Figure 19.1, “The Cue Editor window”. To open the current cue of the chosen master:

- **Cue, Open**

Or:

- **Cue, Cue**

To open a specific cue in a specific cuelist, for example Cue 2 of Cuelist 1:

1. **Open + List**: opens the Cuelist Directory window.
2. **Open + [Cuelist 1]**: opens the Cuelist window for Cuelist 1.
3. **Open + [Cue 2]**: opens the Cue Editor for Cue 2.

Alternatively, using the command line:

- **List 1 Cue 2 Open**

You can also preview a cue using **View Cue** in the Cuelist window; however, you will need to press the **Edit** button in the Cue Editor window to select this as your current editor in order to make any changes.

If the cue to be edited is on stage, selecting **Edit** will enable blind mode until changes are updated, or **Edit** is deselected, see *Blind* (p.206). You can leave the mode otherwise by pressing the **Blind** key.
Within the editor, you can assign fixture parameters and timing in the same way as in the Programmer. See Selecting Fixtures, Modifying Parameters (p.155). Once you have made changes be sure to press the Update key to save them, the Cue Editor will then automatically close.

19.6.1 Viewing Different Cues in the Editor

In addition to the usual functions available in all editors, described in Working with Editors (p.113), the Cue Editor window has controls that allow you to select which cue is displayed:

- **Next and Back:** The Next and Back buttons to allow you to easily step through the cues in the cuelist to view or edit them.
- **View Cue:** You can jump to another cue by typing its number in to the View Cue box and pressing the Enter key.
- **Follow Current:** If you select the Follow Current button, the Cue Editor window will always show the current cue as the cuelist is played back. If you use Next, Back or View Cue to view another cue, or if you edit the current cue, then Follow Current is disabled.
- **Follow Next:** This is similar to Follow Current, except that the next cue is displayed rather than the current one. When the last cue is played, the first cue in the cuelist is displayed.

Tip

As well as the buttons in the Cue Editor window, you can also step through the cues using the Next and Back keys while holding down the Cue key.

19.7 Working with Tracking

Wholehog OS uses tracking, which gives it some very powerful abilities. Tracking can also add extra complexity, but Wholehog OS has several functions that make working with tracking straightforward. For a detailed discussion about tracking, see Tracking (p.6).
19.7.1 Tracking Values Backwards When Recording

You can use the Track Backwards feature when you record a cue to assign the parameter values to the last cue they appeared in, rather than the cue being recorded. For example, suppose that you have a series of cues with intensity values for three fixtures:

<table>
<thead>
<tr>
<th>Fixture:</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Cue 2</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cue 3</td>
<td>70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you assign all three fixtures to 100% and record with merge into Cue 3 (see Insert, Merge and Replace (p.212) for recording with merging), you would get these values:

<table>
<thead>
<tr>
<th>Fixture:</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Cue 2</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cue 3</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

However, if you did the same thing with Track Backwards, you would get:

<table>
<thead>
<tr>
<th>Fixture:</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Cue 2</td>
<td>60</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cue 3</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The value of 100% has been applied to the last cue that the intensity parameter had a value in.

If you Track Backwards a parameter that hasn't been given a value since the start of the cuelist, the value is added to the first cue in the cuelist.

To record a cue with Track Backwards, select the Backwards button on the Record Options Toolbar that appears after you press the Record key:

1. Fixture 1 Thru 3 @ 100 Enter.
2. Record Cue 3
3. Select Track Backwards on the Record Options Toolbar.
4. Enter

Tip
You can also Track Backwards when you update cues using Auto Update; see Auto Update (p.204).
19.7.2 Stopping Values from Tracking Forward

When you insert a new cue into a cuelist, or merge changes into an existing cue, the new values track forwards into later cues in the cuelist. For example, your cuelist has Cues 1 to 4, and Cue 1 has Fixture 1 programmed into it at 30%, so that it tracks through the subsequent cues:

<table>
<thead>
<tr>
<th>Fixture</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Cue 2</td>
<td>100</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cue 3</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Cue 4</td>
<td></td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

You now insert a Cue 2.5 with Fixture 1 at 100%. Because cues 3 and 4 do not change the intensity of Fixture 1, it will remain at 100% for the rest of the cuelist:

<table>
<thead>
<tr>
<th>Fixture</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Cue 2</td>
<td>100</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cue 2.5</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cue 3</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Cue 4</td>
<td></td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

You may want to record the new cue so that parameter values in the new cue return to their original value in the next cue (so that the inserted cue does not change the original looks due to tracking):

<table>
<thead>
<tr>
<th>Fixture</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Cue 2</td>
<td>100</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cue 2.5</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cue 3</td>
<td>30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Cue 4</td>
<td></td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Wholehog OS allows you to record a cue between other cues without destroying existing tracking values. To do this, record the inserted cue without tracking forwards by deselecting the Forward button on the Record Options Toolbar that appears after pressing the Record key. For example:

1. Press the Record key.
2. Deselect Forward on the Record Options Toolbar.
3. Cue 2.5 Enter: insert Cue 2.5 into the cuelist on the currently chosen master.

This is sometimes referred to as recording ‘cue only’ as the changes only affect the recorded cue and do not track into subsequent cues. Note that you can only turn tracking forwards off when you insert a new cue into a cuelist or when you merge values into a cue, not when adding new cues to the end of a cuelist.
19.7.3 Stopping Changes from Tracking Forward when Deleting a Cue

When you delete a cue, this can have unexpected consequences on later cues in the cuelist if the deleted cue contained parameter values that tracked through to contribute to the state of the later cues. For example, you have the following cues:

<table>
<thead>
<tr>
<th>Fixture:</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Cue 2</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Cue 3</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Cue 4</td>
<td></td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

If you now delete Cue 2, Fixture 1 will track from Cue 1 through Cues 3 and 4 at 30%, rather than going to the expected 100% in Cues 3 and 4:

<table>
<thead>
<tr>
<th>Fixture:</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Cue 3</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Cue 4</td>
<td></td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

You can prevent this happening by deleting the cue ‘cue only’ which adds any values that previously tracked through from the deleted cue into the next cue:

<table>
<thead>
<tr>
<th>Fixture:</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Cue 3</td>
<td>100</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>Cue 4</td>
<td></td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

To delete a cue without tracking the changes forwards:

1. **List 1 Cue 3**: select the cue to be deleted.
2. Press and hold the Delete key. The Record Options Toolbar will appear.
3. Deselect Forward from the Record Options Toolbar.
4. Release the Delete key.
19.7.4 Blocking Cues

Blocking cues prevent changes made earlier in the cuelist from tracking through to subsequent cues in the cuelist. See Tracking Through Changes (p.7).

Using State

You can create blocking cues using the State button on the Record Options Toolbar. For example, suppose that you have the following cues:

<table>
<thead>
<tr>
<th>Fixture</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Cue 2</td>
<td>100</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cue 3</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Cue 4</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

to turn Cue 4 into a blocking cue, you copy it to itself ‘with state’:

1. Cue 4 Copy State Cue 4 Enter: the State button is on the Record Options Toolbar that appears when you press Copy.
2. Select Replace.

The values are now:

<table>
<thead>
<tr>
<th>Fixture</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Cue 2</td>
<td>100</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Cue 3</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Cue 4</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

Because of tracking, when you copy a cue to another location you only copy the hard values, so you do not create a new cue that actually represents the on-stage look that you would get by running the original cue.

To copy both hard and tracked values, you can use Copy and State:

- List 1 Cue 5 Copy State List 2 Cue 1 Enter: creates a new cue in Cuelist 2 that is the state of Cue 5 in Cuelist 1.

19.7.5 Unblocking

Unblocking removes redundant hard parameter values. A parameter value is redundant in a cue if it is the same as the value for that parameter in the previous cue in the same cuelist. For example:
In this cuelist, the values for channels 1, 3 and 4 are redundant in cue 3. After unblocking, the values in the cuelist would be:

<table>
<thead>
<tr>
<th>Channel:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 1</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Cue 2</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cue 3</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

To unblock cues, use the Unblock button in the Main Toolbar:

- **Cue 3 Unblock, Enter**: unblock cue 3 on the currently chosen master.
- **List 1 Cue 3 Unblock, Enter**: unblock cue 3 of cuelist 1.
- **Cue 1 Thru 10 Colour Unblock, Enter**: unblock only colour parameters in cues 1 through 10 of the cuelist on the currently chosen master.
- **List 1 Cue 3 Group 10 Colour Unblock, Enter**: unblock only the colour parameters of fixtures in Group 3, in cue 3 of cuelist 1.

To unblock complete cuelists:

- **List 1 Unblock, Enter**

Or on a master:

- **Unblock Choose**

Tip

Unblocking obeys the linked parameter preferences assigned in Setup → Preferences → Programming. For example, if position parameters are not separated and Pan is blocking but Tilt is not, Pan will not be unblocked. For more on linked functions, see *Separating Parameters* (p.178)

Important

Unblocking will remove parameter values from blocking cues, so any future changes to subsequent cues will be tracked through the whole cuelist.
19.8 **Mark Cues (Move in Black)**

A Mark cue is a special designator for a cue that looks at the previous cue and any fixtures with an intensity of zero after completion of the cue. If a fixture meets these requirements, the mark cue allows the fixture(s) to ‘preset’ for the next cue by executing the crossfade for all parameters except intensity. This allows the fixture(s) to ‘move in black’ as they change to their new parameter values. When the next cue is later executed, only the intensity parameter changes as all other parameters will already be at their new values due to the mark. The timing used to mark a cue is determined by the mark method you choose. See *Fade Mark verses Time Marks (p.224)* for details on the different timing methods you can use when marking cues.

19.8.1 **How to Mark to a Cue**

There are several methods to assign a cue to mark:

- Select the Mark cell of a cue, press Set, and then Enter. If you wish to "time mark" the cue, then first input a time using the keypad and then Enter. To remove the mark from a cue select the Mark cell of the cue, press Set, hit Backspace, and then Enter.

- Enable the Mark Fade New Cues or Mark Time New Cues option in the Cuelist Options window. All new cues will be created with the mark type. Note that when Mark Time New Cues is selected all newly recorded cues will get a 2s mark time by default.
• Toggle the Mark Fade or Mark Time button in a Cue Editor window of the cue you wish to mark.

19.8.2 **Fade Mark verses Time Marks**

Cues can be marked with either a *fade mark* or a *time mark*. While the basic principles of marking are the still the same, the timing in which the mark is executed varies between the two methods.

A *Fade mark* uses the fade and delay times assigned in the marked cue to mark fixtures. Fade marking occurs on a fixture by fixture basis, so several fixtures could be marking at different times and rates depending upon their individual cue data in the marked cue.

In the fade mark example below, when cue 2 completes its 2 second fade to 0% intensity, cue 3 will automatically play all of its data except intensity in a 5 second fade. Then when cue 3 is played only the intensity will crossfade at 5 seconds. The fixtures will have moved from centre to left and changed from red to green automatically while in ‘black’.

<table>
<thead>
<tr>
<th>Colour</th>
<th>Position</th>
<th>Intensity</th>
<th>Fade Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Centre</td>
<td>100%</td>
<td>2s</td>
</tr>
<tr>
<td>Red</td>
<td>Centre</td>
<td>0%</td>
<td>2s</td>
</tr>
<tr>
<td>Green</td>
<td>Left</td>
<td>100%</td>
<td>Fade 5s</td>
</tr>
</tbody>
</table>

A *Time mark* uses the time you enter into the mark column to mark fixtures. Time marking occurs at a single uniform rate so all fixture parameters will mark at the same rate regardless of the data in the next cue.

In the time mark example below, when cue 2 completes its 2 second fade to 0% intensity, cue 3 will automatically play all of its data except intensity in a 0s second fade. Then when cue 3 is played only the intensity will crossfade at 5 seconds. The fixtures will have moved from centre to left and changed from red to green automatically while in ‘black’.

<table>
<thead>
<tr>
<th>Colour</th>
<th>Position</th>
<th>Intensity</th>
<th>Fade Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Centre</td>
<td>100%</td>
<td>2s</td>
</tr>
<tr>
<td>Red</td>
<td>Centre</td>
<td>0%</td>
<td>2s</td>
</tr>
<tr>
<td>Green</td>
<td>Left</td>
<td>100%</td>
<td>0s 5s</td>
</tr>
</tbody>
</table>

Tip

Marking occurs with the intensity parameter for standard fixtures as well as I Red, I Green, and I Blue parameters for RGB fixtures such as LEDs.
19.8.3 **Marking the First Cue in a Cue List**

If the first cue in a list is assigned to mark, it will only mark after the last cue in the list is played. By recording a blank cue prior to the first cue in the list, you can create a mark cue for the first look of a show. For example:

<table>
<thead>
<tr>
<th></th>
<th>Mark</th>
<th>Fade</th>
<th>Intensity</th>
<th>Position</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cue 1</td>
<td>Fade</td>
<td>0.2s</td>
<td>100%</td>
<td>Right</td>
<td>Blue</td>
</tr>
<tr>
<td>Cue 2</td>
<td></td>
<td>2s</td>
<td>50%</td>
<td>Left</td>
<td></td>
</tr>
</tbody>
</table>

When cue 0.5 plays it will mark cue 1 so that cue 1 will fade up intensities on stage after the fixtures are already in position and color. Furthermore, since the intensity time of cue 1 is assigned to 2 seconds and the other parameters are assigned to zero, the mark cue will occur as quickly as possible.

19.8.4 **Cuelist Feedback for Mark Cues**

The following figures show the different states of a marking cue.

Figure 19.2. Cue 3 with a Fade Mark

Figure 19.3. Cue 3 Actively Fading into its Mark

Figure 19.4. Cue 3 Fully Marked
Section 20: Working with Cue Timing and Ordering

You can control three aspects of cue timing and ordering:

- The speed and manner in which the transition of parameter values happens when the cue is played back. See Working with Fade Timings (p.228).
- How the cue is triggered. See Working with Cue Triggers (p.238).
- The order in which cues in the cuelist are played back. See Working with Loops and Links (p.242).

The different types of timing values are:

- **Fade time**: The time that it takes fixture parameters to change from their initial value to their value in the cue that is being played back. You can assign a single fade time for the cue, or have separate fade-in and fade-out times. The fade-in time is the fade time for parameters belonging to fixtures that are increasing in intensity, while the fade-out time is the fade time for parameters belonging to fixtures that are decreasing in intensity.

- **Delay time**: The time between the cue being triggered and parameter values starting to change. As with fade times, you can assign a single delay time, or have separate in delay and out delay times. The in delay time is the delay between the cue being triggered and parameters belonging to fixtures that are increasing in intensity starting to change, while the out delay time is the delay between the cue being triggered and parameters belonging to fixtures that are decreasing in intensity starting to change.

- **Path**: How parameter values change during the fade. The simplest path is a straight line, so that parameter values change smoothly and evenly throughout the fade, but you can use paths that make all of the change happen at the start of the fade, for example.

The different types of trigger values are:

- **Wait time**: The time from the previous cue being triggered to the current cue being triggered.
- **Follow-on time**: The time from the end of the previous cue to the current cue being triggered.
- **Timecode**: A specific timecode value when a cue is triggered; see Triggering Cues from Timecode (p.331).
- **Clock**: A real-world time and date value when a cue is triggered; see Clock Triggers (p.240).

Figure 20.1, “Cue timings” shows how the main kinds of timing and triggering values control the playback of cues.
Wholehog OS allows you to assign timings to each parameter of each fixture in a cue, scene or palette. Often, you will want to assign the same value to every fixture parameter; this is described in *Working with Fade Timings* (p.228). Assigning timings for individual parameters is described in *Individual Parameter Timings* (p.232).

20.1 Working with Fade Timings

You can assign fade and delay times, and paths, to cues. You can assign separate fade, delay and path values for the cue.

Cues recorded without assigning any time information will be given the default time; this can be adjusted in the Default Timing pane of the User Preferences window.

20.1.1 Fade Time

To record a cue with a fade time other than the default:

1. Create the desired look for the cue in the Programmer.
2. Fixture Enter : select all the fixtures currently in the Programmer.
3. Time 7 Enter : assign a fade time of 7 seconds.
4. Record Cue 1 Enter : record the cue on the currently chosen master.

To assign times greater than 1 minute, enter the number of minutes followed by the number of seconds:

- Time 140 Enter : select a fade time of 1 minute 40 seconds.
To change the time of an already recorded cue:

1. Cuelist 1: select the cuelist unless the desired cuelist or master is already the chosen master.
2. Cue 2 Time 7 Enter: assigns a fade time of 7 seconds.

Different Fade-in and Fade-out Times

You can assign different fade-in and fade-out times (known as a ‘split time’) using the / key. For example:

1. Create the desired look for the cue in the Programmer.
2. Fixture Enter: select all the fixtures currently in the Programmer.
3. Time 7 / 10 Enter: select a fade-in time of 7 seconds, and a fade-out time of 10 seconds.
4. Record: record the cue on the currently selected master.

Important

Wholehog OS's definition of fade-in and fade-out times is different to that used by some other consoles. Some consoles use fade-in and fade-out times for intensity parameters only and have a separate time for all other parameters; Wholehog OS has fade-in and fade-out times for each individual parameter. Also, with some consoles the fade-out time applies when the cue goes out, so that cue 2's fade-out time takes effect during the change from cue 2 to cue 3 rather than (as with Wholehog OS) cue 1 to cue 2.

Fade Time with Masks

You can record fade times with a mask. For example:

- **Cue 1 Fixture 1 + 2 Colour Time 4 Enter**: sets the fade time for the colour parameter values of Fixtures 1 and 2 in Cue 1.

Tip

If you want to assign individual times for several fixtures or fixture parameters, you can edit them in the Cue Editor window by clicking on its Fade button; see *Individual Parameter Timings (p.232).*

20.1.2 Delay Time

You can create a delay between the cue being triggered and the fade times beginning to execute by assigning the Delay time:

1. List 1 Open: open the cuelist.
2. Select the cue's Delay cell and press Set.
3. **5, Enter**: enter the delay time. As with fade times you can assign separate delay times for the incoming and outgoing parts of the cue, for example **3/5**.

Alternatively, you can use the command line, pressing the Time key twice to assign the delay time:

- **Cue 2 Time Time 5 Enter**

Tip

Note that the Delay time should not be confused with the Wait time; see *Working with Cue Triggers* (p.238).

20.1.3 Paths

Paths determine the way parameter values change during a cue. For example, with the simplest (linear) path, an intensity parameter travels from its start value to its end value at a steady rate for the duration of the cue. The paths available are shown in *Figure 20.2*, “Path Types”.

To select a path for a cue:

1. **List 1 Open**: open the Cuelist window.
2. Select the cue's Path cell and press Set. The Crossfade Paths window will open.
3. Select the path type required for the incoming and outgoing parts of the cue.
4. Press **OK**

Tip

The shape of the paths described above applies when the cue is asserted. When it is released, the path is effectively reversed. For example, attributes with a ‘Start’ path will snap on the Go of a cue, but will snap at the very end of that cue being released (behaving like an ‘End’ path).

20.1.4 Assigning Cue Timings in the Cuelist Window

You can edit fade or delay times in the Cuelist window. Assigning fade or delay times here will assign the new value to all the parameters of all the fixtures in the cue.

1. **Open + Choose**: open the cuelist of the desired master.
2. Click in the cell for the fade or delay time of the desired cue, and press Set.
3. Type in a time value, and press Enter.

When entering a time value, it should be in the form:

```
[hours] h [minutes] m [seconds] s / [hours] h [minutes] m [seconds] s
```
<table>
<thead>
<tr>
<th>Path</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Uses the default path from the fixture's library definition. This is generally Linear for continuous parameters and Start for slotted parameters.</td>
</tr>
<tr>
<td>Linear</td>
<td>Fades at a steady rate for the duration of the cue.</td>
</tr>
<tr>
<td>Start</td>
<td>Snap change at the beginning of the cue.</td>
</tr>
<tr>
<td>End</td>
<td>Snap change at the end of the cue.</td>
</tr>
<tr>
<td>Over</td>
<td>The parameters overshoot their destination and then return to it.</td>
</tr>
<tr>
<td>Under</td>
<td>The parameters move first in the opposite direction before going to their destination.</td>
</tr>
<tr>
<td>Damped</td>
<td>The parameters change more slowly at the start and end of the cue than in the middle.</td>
</tr>
<tr>
<td>Brake</td>
<td>The parameters change more slowly at the end of the cue.</td>
</tr>
<tr>
<td>Speed Up</td>
<td>The parameters change more slowly at the start of the cue.</td>
</tr>
<tr>
<td>Shake</td>
<td>The parameters follow a chaotic, sawtooth fade over the course of the cue.</td>
</tr>
</tbody>
</table>

Figure 20.2. Path Types

For example:

- **2s**: 2 seconds in and out times.
- **2s/5s**: 2 seconds in, 5 seconds out.
- **1m**: 1 minute in and out times.
- **1m10s**: 1 minute and 10 seconds in and out times.
• **1h10m30s/1h**: 1 hour, 10 minutes and 30 seconds in time, and 1 hour out time.

Use the H, M and S buttons that appear when editing a fade or delay time cell to enter the H, M and S text into the cell. Alternatively, you can use an external keyboard.

Note that if you enter **140** the time will be 1 minute 40 seconds, not 140 seconds (2 minutes 20 seconds).

To assign paths directly in the Cuelist window:

1. Click in the **Path** cell for the desired cue, and press **Set**.
2. Choose a path from the displayed list; see Figure 20.3, “Selecting a Path in a Cuelist Window”.

 The In path is applied when a fixture is increasing in intensity during the crossfade, and the Out path when a fixture is decreasing in intensity.
3. Press **OK**.

![Figure 20.3. Selecting a Path in a Cuelist Window](image)

The different types of path are explained in *Paths (p.230)*.

20.2 Individual Parameter Timings

When you record a cue, all of the fixture parameters in the cue are assigned the default fade, delay and path values. Similarly, when you assign timings to a cue after recording, the timing value is applied to all fixture parameters in the cue. However, you can assign fade, delay or path values to individual parameters in the Programmer, and these settings are then included when
you record cues and scenes, and (optionally) palettes. You can also assign timings to parameters in the cue, scene and palette editors. Note that you can only assign timings for a parameter that has a value in the editor.

To display parameter fade times, delay times or paths in an editor, select the Fade, Delay or Path buttons from the top left of the editor window.

You can assign the individual timings of parameters using the parameter wheels, the command line or directly in editor windows. You can also assign timings to all parameters of a fixture using the parameter wheels or the command line.

Important

If you assign individual timings for parameters and subsequently assign an overall cue time, then the individual parameter timings will be replaced by the overall cue time.

20.2.1 Assigning Parameter Timings with the Parameter Wheels

To assign fade and delay timings to all the parameters of a fixture:

1. Select the fixtures that you want to assign timings to, making sure that they have been given parameter values.
2. Press the Time key.
3. The Wheels Toolbar will show the available timing types (Fade In, Fade Out, Delay In and Delay Out) together with their current settings; see *Figure 20.4, “The Wheels Toolbar showing Timing”*.
4. Use the parameter wheels to assign the desired Fade In, Fade Out, Delay In and Delay Out.

Note that if you want to see the timings that you have assigned in the editor, you can select the Fade or Delay views using the buttons in the top left of the editor window. You don't have to be in these views to assign timings, however.

Figure 20.4. The Wheels Toolbar showing Timing

To assign fade and delay timings to specific parameter types:

1. Select the fixtures that you want to assign timings to, making sure that they have been given parameter values.
2. Press the Time key.
3. The Wheels Toolbar will show the available timing types.
4. Click on Fade In, Fade Out, Delay In or Delay Out and select a parameter type; see *Figure 20.5, “Selecting Parameter Types from the Wheels Toolbar”*.
5. Use the parameter wheels to assign the desired timing.
To assign a path to all the parameters of a fixture:

1. Select the fixtures that you want to assign a path to, making sure that they have been given parameter values.
2. Press the Time key.
3. The Slot Toolbar will show buttons for All, In and Out; see Figure 20.6, “The Slot Toolbar showing Paths”.
4. Choose In to assign a path to be applied to the parameters when the fixture they belong to is increasing in intensity during the crossfade. Choose Out to assign a path to be applied to parameters when the fixture they belong to is decreasing in intensity during the crossfade. Choose All to assign a path to be applied to parameters of fixtures irrespective of whether their intensity is increasing or decreasing.

The Paths Toolbar will open; see Figure 20.7, “The Paths Toolbar”.
5. Select the desired path from the Paths Toolbar. The different types of path are explained in Paths (p.230).

Assigning Parameter Timings with the Command Line

To assign the fade time for all parameters of a fixture:

1. **Fixture 1**: select the fixtures you want to assign a time to, making sure that they have been given parameter values.
2. **Time 4, Enter**: assigns the fade time to 4 seconds.
To assign separate fade in and fade out times:

1. **Fixture 1**: select the fixtures you want to assign a time to, making sure that they have been given parameter values.
2. **Time 4 / 7, Enter**: assigns the Fade In time to 4 seconds and the Fade Out time to 7 seconds.

To assign a fade time for a particular parameter type:

1. **Fixture 1**: select the desired fixtures.
2. **Colour Time 4, Enter**: assigns the fade time of the colour parameters to 4 seconds.

To assign a delay time, press the **Time** key twice:

1. **Fixture 1**: select the desired fixtures.
2. **Time Time 2, Enter**: pressing **Time** twice assigns the **delay time**.

To assign a path, press the **Time** key three times:

1. **Fixture 1**: select the desired fixtures.
2. **Time Time Time 2, Enter**: enter a number to represent the path.

Select the path by entering a number; the mapping is the same as the order they appear on the path toolbar, starting at zero for the default path.

20.2.3 Assigning Parameter Timings in an Editor Window

To assign fade or delay times directly in the spreadsheet of an editor:

1. View the required timing type by pressing either the **Fade** or **Delay** button in the top left of the editor window.
2. Click in the cell for the desired parameter, or click and drag to select a range of cells.
3. Press **Set**.
4. Type in a time value, and press **Enter**.

When entering a time value, it should be in the form:

- \([\text{hours}] \ h \ [\text{minutes}] \ m \ [\text{seconds}] \ s / [\text{hours}] \ h\ [\text{minutes}] \ m \ [\text{seconds}] \ s\)

For example:

- **2s**: 2 seconds in and out times.
- **2s/5s**: 2 seconds in, 5 seconds out.
• **1m**: 1 minute in and out times.

• **1m10s**: 1 minute and 10 seconds in and out times.

• **1h10m30s/1h**: 1 hour, 10 minutes and 30 seconds in time, and 1 hour out time.

Use the H, M and S buttons that appear when editing a fade or delay time cell to enter the H, M and S text into the cell. Alternatively, you can use an external keyboard.

Tip

If you enter **120**, this will be interpreted as 1 minute 20 seconds. To have the console interpret it as 120 seconds (i.e. 2 minutes), enter **120s**.

To assign paths directly in the spreadsheet of an editor:

1. Press the **Path** button in the top left of the editor window.

2. Click in the cell for the desired parameter, or click and drag to select a range of cells.

3. Press **Set**.

4. Choose a path from the displayed list; see Figure 20.9, “Selecting a Path in an Editor”.

 The **In** path is applied when the fixture is increasing in intensity during the crossfade, and the **Out** path when the fixture is decreasing in intensity.

5. Press **OK**.
20.2.4 **Fanned Timings**

You can fan timings across multiple fixtures, just as you can fan colour or position. For example, to fan times across 10 fixtures:

- **Fixture 1 Thru 10 Time 5 Thru 14 Enter**: fans the fade times of Fixtures 1 through 10 between 5 and 14 seconds:

Similarly, you can fan delay times:

- **Fixture 1 Thru 5 Time Time 5 Thru 10 Enter**: fans the delay times of Fixtures 1 through 5 between 5 and 10 seconds.

For more on fanning, including fanning using the parameter wheels and in spreadsheet views, see *Fanning* (p.173).

The different types of path are explained in *Paths* (p.230).
20.3 Working with Cue Triggers

Wholehog OS provides several ways to trigger cues in addition to manual operation from the Go key. To assign a cue’s trigger:

1. List 1 Open: open the cuelist.
2. Select the Wait cell for the desired cue, and press Set.
3. The Trigger Toolbar will appear below the Wait cell; see Figure 20.10, “The Trigger Toolbar”. Select an option from this.

![Trigger Toolbar](image-url)

Figure 20.10. The Trigger Toolbar

The trigger options are:

- **Halt**: When the cuelist reaches a Halt, it stops executing cues and waits for the Go key to be pressed. A Halt is shown by an empty Wait cell, and it is the default cue trigger.

- **Wait**: The Wait time is the time between the triggering of the previous cue (either automatically or by pressing Go) and the next cue to be triggered. It should not be confused with the Delay, which is the time between the cue being triggered (after a Wait if there is one) and the fade starting. The Wait time schedules cues within the cuelist, whereas the Delay time schedules the fades of each parameter within the cue. A cue can contain multiple Delay times, but it can only have one Wait time. See Figure 20.1, “Cue timings”.

A wait is displayed as the time value in the Wait cell.

- **Follow**: A follow will trigger the next cue once the previous cue has completed all its fade and delay times. You can enter a time after pressing the Follow button, which determines the time between the previous cue completing and the follow cue being triggered. See Figure 20.1, “Cue timings”.

The follow is displayed in the Cuelist window as ‘Follow + [time]’.

The follow time should not be confused with the wait time. The follow time controls the time between the end of one cue and the triggering of the next, while the wait time controls the time between the triggering of one cue and the triggering of the next.

- **Timecode**: The cue is triggered when this timecode value is received. See Working with Audio, MIDI and Timecode (p.319). The timecode value will be displayed in the wait cell.
• **Manual**: A manual cue can only be triggered by pressing the Go key. This stops the cuelist until the Go key is pressed, irrespective of any wait, follow or timecode triggers that later cues in the list may have.

Manual cues are useful because the word ‘Manual’ appears in the Cuelist window to remind the operator that they need to press the Go key. They are also useful to prevent times being recorded into the Wait column when using Learn Timing (p.239).

• **Clock**: The cue is triggered when this real-world time and date is reached on the Wholehog OS built in clock; see Clock Triggers (p.240).

20.3.1 Learn Timing

You can use Learn Timing to assign cue trigger timing values by operating the cues with the Go key manually once. The console can either assign wait times to replicate your timing, or assign the cue trigger to a frame value of a running timecode.

To use Learn Timing with timecode:

1. Open, Choose: open the Cuelist window of the required cuelist.
2. Options → Cuelist Options: open the Cuelist pane of the cuelist's Options window.
3. Select Enable Timecode, and choose a timecode source. Close the Options window.
4. In the Cuelist window, click View Timecode. The Timecode Toolbar will open.
5. If your timecode source is not currently running, click Simulate on the Timecode Toolbar to have the console create a timecode source. Controls for the timecode will appear.
6. In the Cuelist window, select Learn Timing.
7. Start the timecode, and press the Go key when the timecode reaches the time that you want each cue to go. A timecode frame value will appear in the Wait cell for each cue.
8. When you have finished, deselect Learn Timing.

Now when you run the timecode, the cues will be triggered when the timecode reaches each cue’s assigned frame. For more information on timecode, see Working with Audio, MIDI and Timecode (p.319).

To use Learn Timing without timecode:

1. Open, Choose: open the Cuelist window of the required cuelist.
2. Ensure that Enable Timecode is not selected.
4. Press the Go key to run the first cue, and again to run subsequent cues after
the required time interval. A time value equivalent to the duration between
Go presses will appear in the Wait cell for each cue.

5. When you have finished, deselect Learn Timing.

Now when you run the first cue, the subsequent cues will be triggered at the same intervals as
when you ran them manually.

Tip
Learn Timing will only set a trigger on a cue that is currently set to Halt - that is, it has an empty Wait cell. To remove existing wait times from
 cues, select the wait cell(s) and press Set. Select Halt from the toolbar.

20.3.2 Clock Triggers

To assign a cue to be triggered at a particular time and date using Wholehog OS's internal clock:

1. **List 1 Open**: open the cuelist.

2. Select the Wait cell for the desired cue, and press Set.

3. The Trigger Toolbar will appear below the Wait cell; see Figure 20.10, “The
Trigger Toolbar”.

4. Select Clock; the Clock Trigger window will open:

![Clock Trigger Window](image)

5. Adjust the Start Time and Start Date to assign a single shot trigger.
6. If you want the trigger to recur at regular intervals, check the Recurrence Pattern check box. Then click the frequency (Time, Daily, Weekly, Monthly, Yearly) with which you want the trigger to recur, and select options for the specified frequency.

Tip
The next valid trigger date and time is shown at the bottom of the Clock Trigger window.

7. Click OK.

Once you have set a clock trigger, the cuelist window will now indicate the trigger time and type in the cue’s Wait column:

To enable or disable the clock functions on a cuelist, toggle the Enable Clock button in the cuelist window:

Tip
You can also enable or disable the clock functions for a cuelist in the cuelist’s Cuelist Options window, or using macros; see Automating the Console Using Macros (p.335).

The Clock Toolbar
The Clock Toolbar shows the time and date according to the Wholehog OS clock, and information about the next cue due to be triggered. To open the Clock Toolbar:

- Open + Clock : the Clock Toolbar will open on the left touchscreen:
The Clock Toolbar will automatically update its fields according to the next valid trigger.

Tip

You can assign the format of the date and time in the Appearance pane of the Preferences window. The Clock Toolbar, Cuelist triggers and the Command Line Toolbar clock will display in the selected format.

20.4 Working with Loops and Links

Normally cues in a cuelist will be replayed in numerical order, but you can use links to change this. Links can be used to jump to other points in the cuelist, or to create loops.

Unlike some consoles, Wholehog OS creates a link as a special type of cue, rather than an attribute of an ordinary cue. Because it is a separate item in the cuelist, you can move cues within the list without disturbing the link.

Tip

When a cuelist gets to the end, it will link back to the first cue by default, so there is no need to put a link in.

20.4.1 Creating a Link

To create a link:

1. Open + [Cuelist 1]: open the cuelist window.
2. Play the cues in the list until the current cue (shown by -> in the wait column) is the cue before where you want the link.
3. Click on the Insert Link button in the window. The link cue will be inserted after the current cue.
4. Select the Fade cell of the link.
5. Set [cue number] Enter: assign the cue number to be linked to.

You can delete link cues in the same way as any other type of cue. For example:

- Cue 3.5 Delete

20.4.2 Creating a Loop

To create a loop, you need to have two things:
• A link that points to a cue earlier in the cuelist.
• All the cues in the loop (between the linked-to cue and the link cue) must be assigned with wait or follow triggers; see Working with Cue Triggers (p.238).

Wholehog OS will recognise this as a loop; see Figure 20.11, “A Cuelist with a Loop”.

![Figure 20.11. A Cuelist with a Loop](image)

Exiting Loops
You can determine when the cuelist stops looping and continues with cues after the loop. The options are:

- **Forever**: the loop will run indefinitely until you press the Go key.
- **Count**: the cuelist will loop the assigned number of times. Assigning a count of zero will make the cuelist ignore the link.
- **Timed**: the cuelist will loop until the assigned time period has elapsed.

To assign the looping behaviour:

1. Open + [Cuelist 1]: open the cuelist window.
2. Select the link cue’s Delay cell, and press Set.
3. Select an option from the Loops Toolbar:
4. If you have selected Count or Timed, enter a count or timed value.

You can also configure what happens when you press the Go key during a loop; see Action of go when Looping (p.273).

20.4.3 Tracking Through Loops
By default, Wholehog OS's Maintain State (p.8) feature ensures that, when you use links to change the order of cue playback, the cues appear on stage as if they had been played back in the order they appear in the cuelist.
Sometimes, however, you might want to track through links rather than maintain state. For example, you are creating a loop where the first time through you want the four fixtures to come on one at a time, and throughout the loop you want them to alternate colour between red and blue. To do this, you might plot:

<table>
<thead>
<tr>
<th>Cue</th>
<th>Fixture 1</th>
<th>Fixture 2</th>
<th>Fixture 3</th>
<th>Fixture 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int.</td>
<td>Colour</td>
<td>Int.</td>
<td>Colour</td>
</tr>
<tr>
<td>1</td>
<td>50%</td>
<td>Red</td>
<td>Blue</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>↓</td>
<td>Blue</td>
<td>50%</td>
<td>Red</td>
</tr>
<tr>
<td>3</td>
<td>↓</td>
<td>Red</td>
<td>↓</td>
<td>Blue</td>
</tr>
<tr>
<td>4</td>
<td>↓</td>
<td>Blue</td>
<td>↓</td>
<td>Red</td>
</tr>
<tr>
<td>5</td>
<td>Link to Cue 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The idea is that the intensity of the next fixture is brought to 50% in each cue, and that these values then track through for the duration of the loop (shown by the arrows). However, because of the Maintain State function, when the cuelist loops back to cue 1 Wholehog OS will make cue 1 look as it would have if you had run the cuelist in order. The result is that fixtures 2 to 4 will go out, just as they were the first time round the loop.

To stop this happening, you need to enable Track Through Loops, in the Cuelist Options window:

1. **Open List 1**: open the cuelist window.
2. **Press Options** and select the Track Through Loops tickbox.

Note that Track Through Loops also applies when the cuelist automatically loops back to the start of the list after you play back the last cue in the list.

Important

The Track Through Loops option applies to the whole cuelist. Using it may have unintended consequences when playing back other cues in the cuelist out of sequence.
Section 21: Working with Cuelists

Cuelists are lists of cues, usually used to play back the cues in a defined order. A cue number is specific to each cuelist, not the entire console, so there can be a cue 1 for cuelists 1, 2 and 3. Cuelists are held in the Cuelist Directory (Figure 21.1, “The Cuelist Directory window”), and it is possible to copy or move cues between cuelists; see Copying and Moving Cues (p.214).

To open the Cuelist Directory:

- Open + List

Alternatively:

- List, List

For general information on working with directories, see Working with Directories (p.108).

Figure 21.1. The Cuelist Directory window

To open a cuelist (Figure 21.2, “The Cuelist window”):

- Open + [Cuelist 1] : select a cuelist from the Cuelist Directory.

Or with the command line:

- List 1 Open

Or:

- Open + Choose: select the master with the cuelist.

Tip

Cuelist windows can be set to always show the same cuelist or to follow the currently chosen master: see Cuelist Feedback (p.282).
21.1 Creating Cuelists

Cuelists are created automatically when you record a cue to an empty location in the Cuelist Directory, or to a master that has no cuelist attached to it. See Recording a Cue (p.211).

21.2 Naming Cuelists

You can name cuelists:

1. Open + List : open the Cuelist Directory.
2. Check that the Guard button is selected, so that you don't accidentally activate a cuelist when pressing its button in the directory.
3. Select the cuelist.
4. Set [name] Enter : type in the name.

Tip

You can rename a cuelist when it is attached to a master by pressing Set + Choose.

21.3 Deleting Cuelists

To delete a cuelist:

1. List 1 Delete : deletes cuelist 1.
2. Click OK to confirm the delete.
Or from the cuelist directory:

1. **Open + List**: open cuelist directory.
2. Check that the **Guard** button is selected, so that you don’t accidentally activate a cuelist when pressing its button in the directory.
3. **Delete, [Cuelist 1]**: delete the cuelist. You will be asked to confirm the action.

Tip
If you prefer not to be asked to confirm the delete action, select Don't Ask Me Again in the confirmation window. You can reenable the confirmation by going to Setup → Preferences → Programming and selecting Confirm before deleting directory items.

Tip
To detach a cuelist from its master rather than deleting it completely from the show file, hold Delete while pressing the master's Choose button. This removes the cuelist from the master but not from the cuelist directory.

21.4 Copying and Moving Cuelists

Cuelists can be copied and moved within the Cuelist Directory. To open the Cuelist Directory:

- **Open + List**

21.4.1 Copying Cuelists

To make a copy of a cuelist:

- **List 1 Copy List 2 Enter**: copies Cuelist 1 to Cuelist 2.

If the destination cuelist already exists, you will be asked to choose an option: *Insert, Merge and Replace* (p.248).

21.4.2 Moving Cuelists

To move a cuelist to a new location within the Cuelist Directory:

- **List 1 Move List 2 Enter**: moves Cuelist 1 to Cuelist 2.

If the destination cuelist already exists, you will be asked to choose an option: *Insert, Merge and Replace* (p.248).
21.4.3 **Insert, Merge and Replace**

When copying or moving a cuelist, if the destination location already has a cuelist in it, you will be prompted with record options of Insert, Merge or Replace:

- **Insert**: creates a new destination cuelist. The new cuelist will be assigned a free location just before the one chosen, using a point number if necessary.

- **Merge**: Incorporates the source information into the destination cuelist. If the cue numbers are in both cuelists, the new parameter values of the cues will replace the old.

- **Replace**: Overwrites the cuelist information in that destination.

If you are copying a cuelist, all three options are available. If you are moving a cuelist, only the Insert option is available.

Tip

If you know that you are about to copy or move a cuelist to an existing destination, you can pre-select Insert, Merge or Replace from the Record Options Toolbar. This appears after you press the Record, Copy or Move keys.
Section 22: Working with Scenes

A scene is a single cue with full timing features that does not belong to a cuelist. Scenes can be used to store a single look that may be called back for use in later programming, or to play back many simple looks directly from physical or virtual masters.

Scenes are stored in the Scene Directory: see Figure 22.1, “The Scene Directory window”. For general information on working with directories, see Working with Directories (p.108). To open the Scene Directory:

- Open + Scene : opens the Scene Directory.

See also Scene Playback (p.291).

![Figure 22.1. The Scene Directory window](image)

22.1 Recording a Scene

You can record scenes either directly to a physical master for immediate playback, or to the Scene Directory.

22.1.1 Recording to the Scene Directory

To record a scene:

1. Create the look for the scene in the Programmer or editor.
2. Record, Scene : the Scene Directory window opens.
3. Select the destination location in the Scene Directory window.
4. Alternatively, enter a number on the keypad and press Enter.
22.1.2 **Recording to a Physical Master**

You can record a scene directly to a physical master. Wholehog OS will automatically put it in the next available location in the Scene Directory:

1. Create the look for the scene in the Programmer or editor.
2. Record, Scene
3. Press the Choose key above the desired physical master.

22.1.3 **Naming a Scene**

You can give a scene a name that will be displayed in the Scene Directory window:

1. **Open + Scene**: open the Scene Directory.
2. Check that the **Guard** button is selected, so that you don't accidentally activate a scene when pressing its button in the directory.
3. Select the scene.
4. **Set [name] Enter**: type in the name.

Tip
To name a scene immediately after recording it, pressing the Set key will open a Quickname window. Enter the scene name and select OK.

22.2 **Deleting Scenes**

To delete a scene:

1. **Scene 1 Delete**
2. Click OK to confirm the delete.

Tip
If you prefer not to be asked to confirm the delete action, select Don't Ask Me Again in the confirmation window. You can reenable the confirmation by going to Setup → Preferences → Programming and selecting Confirm before deleting directory items.

You can delete a range of scenes:

1. **Scene 1 Thru 4 Delete**: deletes scenes 1 to 4.
2. Click OK to confirm the delete.
22.3 Copying and Moving Scenes

To make a copy of a scene:

- **Scene 1 Copy Scene 2 Enter**: copies the contents of Scene 1 to Scene 2.

Similarly, to move a scene to a new location:

- **Scene 1 Move Scene 2 Enter**: moves Scene 1 to Scene 2, effectively deleting 1.

If the destination scene already exists, you will be asked to choose an option: *Insert, Merge and Replace* (p.252).

22.4 Editing Scene Contents

You can edit the contents of a scene in an editor window. For example, to open Scene 1 for editing:

1. Open + Scene: opens the Scene Directory.
2. Open + [Scene 1]: opens the scene editor for Scene 1.
3. Alternatively using the command line: Scene 1 Open
4. Press the Edit button in the editor window to select this as your current editor.

Within the editor, you can assign fixture parameters and timing in the same way as in the Programmer; see *Selecting Fixtures, Modifying Parameters* (p.155). For general information on working with editors, see *Working with Editors* (p.113).

22.5 Scene Timing

Scene timing controls the fade-in and delay of a scene when it is run on a master; see *Scene Playback* (p.291).
You assign and edit scene timings in the same way as for cues; see Working with Fade Timings (p.228). You can assign scene timing in the Programmer before recording the scene, or later in the scene editor. You can also assign the fade time of a scene from the command line. For example, to give Scene 1 a fade time of 6 seconds:

- Scene 1 Time 6 Enter

You can also record fade times with a mask. For example:

- Scene 1 Fixture 1 + 2 Colour Time 4 Enter: sets the fade time for the colour parameter values of fixtures 1 and 2 in Scene 1.

22.6 Insert, Merge and Replace

When recording, copying or moving a scene, if the destination location already has a scene recorded in it, you will be prompted with record options of Insert, Merge or Replace:

- **Insert**: creates a new destination scene. The new scene will be assigned a free location just before the one chosen, using a point number if necessary.
- **Merge**: Incorporates the new information into the destination scene. If the same fixture parameters are in both scenes, the new values will replace the old.
- **Replace**: Overwrites the scene information in that destination.

If you are copying a scene, all three options are available. If you are moving a scene, only the Insert option is available.

Tip

If you know that you are about to record, copy or move a scene to an existing destination, you can pre-select Insert, Merge or Replace from the Record Options Toolbar. This appears after you press the Record, Copy or Move keys.
Section 23: Working with Effects

You can use effects to create a repeating change or ‘movement’ in the value of fixture parameters. Effects are recorded as part of cues, scenes and palettes.

Effects are applied to parameters using effect tables that apply mathematical functions (such as sine or tangent) to values against time. Each parameter that has an effect applied to it has five effects attributes: table, size, rate, offset, and length; see Types of Effect (p.253). In addition the effect table has its own timing parameters for fade, delay, and path.

There are three ways of applying effects:

- **Predefined Effect Palettes:** A range of pre-programmed effects can be found in the Effect Directory that can be edited or applied quickly.
- **The Effects Engine:** You can assign and edit the effects values for your current fixture selection in the Effects Engine. The Effects Engine is often more convenient for assigning and editing effects, as it allows you to see all the effects attributes without having to switch the editor's display to display the different effects attributes.
- **Applying Effects in Editors:** You can assign and edit effects values for specific fixture parameters in editors such as the Programmer, just as you do with other parameter values.

23.1 Types of Effect

23.1.1 Effect Tables

You can select the effect type by choosing an effect table that applies a mathematical function (such as sine or tangent) to the parameter values. The available tables, and how the parameter value varies over time, are shown in Figure 23.1, “Effect Tables”.

Note that the effects table varies the value of the parameter either side of its base level, represented by the dotted line in the diagrams. The three types of random table are weighted differently, biasing the random parameter values towards the low, high or middle part of the possible range.

Using Effect Tables

Listed below are examples of combinations of effects tables in use:

- **Circular Motion:** A Sine table is applied to pan and tilt, with tilt given an Offset of 90 degrees.
- **Square Motion:** A Sawtooth table is applied to pan and tilt, with tilt given an Offset of 90 degrees.
• **Can-Can Motion**: A Step table is applied to pan, a Sine table is applied to tilt.
• **Fly In Motion**: A Step table is applied to pan, a Ramp table is applied to tilt.
• **Blue Step Colour Effect**: A Mark On table is applied to cyan and magenta.
• **Iris Chase**: A Sawtooth table is applied to the iris.

Tip

You can create many of these useful combinations of tables using the predefined effect palettes; see *Applying Predefined Effect Palettes (p.256).*

23.1.2 Effect Attributes

The appearance of the effect table can be manipulated through a combination of adjustments to its attributes: rate, size, offset, length and N-shot.

Effect Rate

The effect rate controls the speed of the effect in cycles per minute.

Adjusting an effect's rate globally will increase or decrease the number of cycles it completes per minute. When combining effects, you can use the rate attribute to build a specific look. For example, if you create an effect where a fixture performs a circular motion fading in on the first circuit, out on the second, then the effect on the intensity parameter would need to be half of the rate on the position parameters.

The following diagram shows how the value of a parameter assigned to the sawtooth table changes over time, with different rate values:
Effect Size

The range over which the parameter value varies. This is described in terms appropriate for the parameter, for example degrees for position parameters, or slots for slotted colour parameters.

For example, applying a Sine wave with the default size of 5Hz to a base value strobe rate of 5Hz will vary it from 0Hz through to 10Hz. You can decrease this range by adjusting the size: 2Hz will give a range between 3Hz and 7Hz.

When combining effects, adjusting specific parameters' effect sizes will change the look of the effect. For example, a circle effect comprising of a sine table on the pan and tilt can be modified to look like an ellipse by altering the size of either pan or tilt.

The following diagram shows how the value of a parameter assigned to the sawtooth table changes over time, with different size values:

Effect Offset

The offset sets the effect start and finish point for each effect, so they can be staggered. It is assigned in degrees.

For example, to create an intensity ripple across a range of fixtures, divide 360 degrees by the number of fixtures and offset each fixture by multiples of this amount. For example, with six fixtures offset at 0, 60, 120, 180, 240, 300 degrees. The easiest way to do this is to use fanning; see Fanning (p.173).

The following diagram shows how the value of a parameter assigned to the sawtooth table changes over time, with different offset values:
Effect Length

The length is the proportion of the effect’s period that it is active for. It is assigned as a percentage.

The following diagram shows how the value of a parameter assigned to the sawtooth table changes over time, with different length values:

N Shot

This is the number of times that the effect repeats before finishing. A dash (—) in the N Shot cell denotes that the effect will run indefinitely.

23.2 Applying Predefined Effect Palettes

You can quickly apply effects to the current selection using predefined effects palettes in the Effect Directory; see Figure 23.2, “The Effect Directory”. Effects palettes for parameter functions not available in the current selection will be greyed out; for example the Iris Step palette is not available for Studio Color 575s as they do not have an iris parameter.

To open the Effect Directory:

- Open + Effect

Or:

- Effect, Effect
To apply an effects palette:

1. **1 Thru 5 @ 50 Enter**: select the required fixtures and assign an intensity value.
2. **Effect 13 Enter**: assigns Effect Palette 13. Studio Colors 1 to 5 fade their intensity between 0 and 100%.

You can also select the effect palette by pressing or clicking on its button in the Effect Directory window.

23.2.1 Adjusting Predefined Effects

Once you have applied a predefined effects palette to the selected fixtures, you can alter the attributes (Rate, Size, Offset and Length) of the effect using the parameter wheels; for explanations of the different attributes, see *Effect Attributes* (p.254). The Wheels Toolbar shows the current parameter value being assigned by each wheel whenever the Effect key is selected; see *Figure 23.3, “The Wheels Toolbar showing Effect Attributes”*. For more on the different effect attributes see *Types of Effect* (p.253).

![Effect Directory](image)

Figure 23.2. The Effect Directory

![Wheels Toolbar](image)

Figure 23.3. The Wheels Toolbar showing Effect Attributes

23.3 Applying and Editing an Effect

23.3.1 Applying Effects with the Effects Engine

To apply an effect:

1. In the Programmer or editor, select the required fixtures and assign their base parameter values. These settings will be the ‘underlying’ state for the effect:
for example, the centre position of a fixture doing a circular movement effect. Equally, an intensity ripple between 0-100% will need a base value of 50% in order to use the full length of the effect.

2. **Open + Effect**: the Effects Engine and Effect Directory will open; see Figure 23.4, “The Effects Engine” and Figure 23.2, “The Effect Directory”.

3. In the Effects Engine, select the Table cells for the fixture parameters that you want to apply the effect to.

4. Press Set, choose the effect table from the menu and press Enter.

![Figure 23.4. The Effects Engine](image)

Once the effect table is assigned, you can modify the effect attributes either by editing the values in the spreadsheet or using the parameter wheels when the Effect key is selected.

Tip

You can quickly edit the attributes of all one parameter type (All Intensity, All Position, All Colour, All Beam) or for all parameters within the top five rows of the Effects Engine.

To edit the values in the spreadsheet:

1. Select the cells for the parameters that you want to edit, and press Set.
2. Type a new value, and press Enter.

Or, using the parameter wheels:

1. Press the Effect key.
2. Select the individual parameters that you want to edit in the left hand Function column of the Effects Engine window.
3. Adjust the Size, Rate, Offset and Length parameter wheels as required.
Note that the parameter wheels only control the current effects row, selected using the buttons in the Function column. There are buttons for all parameter types, for all intensity, all colour, all position, all beam, and for each individual parameter type; see Figure 23.4, “The Effects Engine”.

Tip
All effect attributes can be fanned using the Fan key and parameter wheels; remember to select the required parameter types in the Effects Engine Function column first. You can also enter a value of, say, 50 Thru 80 in a cell of the Effects Engine window. See Fanning (p.173).

23.3.2 Applying and Editing Effects in the Programmer or Editor

Effects can be assigned directly to specific fixtures and their attributes in the Programmer. This is helpful when you wish to make small changes without opening the Effects Engine. Effect types are assigned and edited in the Table view, whilst effect attributes can be adjusted in the Size, Rate, Offset, Length, Table and N Shot views. The views are selected by buttons at the top of the Programmer or editor window.

For example, to create an offset circle effect using fixtures in positions from the current onstage look:

1. Main Toolbar → Programmer : open the Programmer.
2. 1 Thru 5 Position Suck : sucks position information from fixtures 1 through 5 that are currently live on stage.
3. Table : select the Table view in the Programmer; the pan and tilt column will read [Off].
4. Select all pan and tilt cells of the selected fixtures by clicking and dragging.
5. Set → Sine, Enter : choose the Sine table from the drop-down menu and confirm by pressing Enter.
6. Select Offset : select the Offset view in the Programmer; the pan and tilt column will read [0-Deg].
7. Select all pan and tilt cells of the selected fixtures by clicking and dragging.
8. Set 1 Thru 288 Enter : offset pan and tilt equally across the fixtures.

Once you have applied an effect to a parameter, it will appear in the Value view of the Programmer or editor with the effects symbol next to the value:
Tip

When assigning effect parameters such as Offset, remember that values 0 and 360 Degrees are the same. Fanning a range of fixtures from 0 through to 360 degrees of offset will mean that the first and last fixtures will share the same offset value.

23.3.3 Tracking Effects

By default, effects values track through to subsequent cues until a new value for the particular parameter is reached. You can turn effects on and off, set them to track through in the Table column of the Effects Engine, Programmer or editor.

In the Programmer for example:

1. Select Table view.
2. Select the cell of the parameter for which you want to turn the effect off or allow to track through, and press Set.
3. Select Off or Track from the drop down menu.

23.4 Cue Timing and Effects

When you record a cue, scene or palette that includes effects values, each fixture parameter has its fade, delay and path value in the usual way; see Individual Parameter Timings (p.232). These timings control how the fixture parameter changes from its starting value to its underlying value in the cue or scene, as the cue or scene is played back.

You can assign separate effects timings (fade, delay and path) to control how the effects movement changes as the cue or scene is played back. Figure 23.5, “Controlling Effect Transitions with Timing” shows how different timing values control how a parameter with a step effect changes during playback of a cue.
Figure 23.5. Controlling Effect Transitions with Timing

You can assign effect fade times using the command line:

1. **Fixture 1**: select the fixtures you want to assign an effect time to, making sure that they have been given parameter values.

2. **Effect Time 4, Enter**: assigns the effect fade time to 4 seconds.

To assign an effect delay time:

1. **Fixture 1**: select the desired fixture(s).

2. **Effect Time Time 2, Enter**: pressing Time twice assigns the delay time.
You can also view and assign effect timing values in the Effects Engine window:

![Effects Engine window]

23.5 Recording an Effect Palette

You can record any combination of effect parameter values into a palette:

1. In the Programmer or editor, select the fixtures, and assign the required effects. You can do this directly in an editor or using the Effects Engine.
3. Select a location by pressing a button in the directory window.

This will only record parameters that have been touched in the Effect window, and does not include the parameters' underlying values. To include underlying intensity, position, colour, beam and time information use the mask function:

1. Select the fixtures, and assign the desired effect table.
2. Record, Effect
3. Select Mask from the Record Options Toolbar, and select the parameter types that you wish to record: Use I for intensity, Use P for position, Use C for colour, Use B for beam, and Use T for time values.

 For more on masking when recording palettes, see *Recording with Specified Masking (p.194)*.

4. Select a location from the Effect Directory window.

23.5.1 Naming an Effect Palette

You can give an effect palette a name that will be displayed in the Effect Directory:

1. Open + Effect : opens the Effect Directory.
2. Check that the Guard button is selected, so that you don't accidentally activate a palette when pressing its button in the directory.
3. Select the palette to be named.
4. Set [name] Enter: type in the name.

Tip
To name an effect palette immediately after recording it, pressing the Set key will open a Quickname window. Enter the palette name and select OK.

23.6 Using Effect Palettes in Programming

In the Programmer or editor, you can apply an effect by selecting it from the Effect Directory. The effect will be applied to the current fixture selection, providing that it contains parameter information for the selected fixtures. An iris step effect cannot therefore be applied to a fixture that has no iris function. By default, predefined effect palettes are direct; see Direct Palettes (p.197).

For example:

1. Open + Effect: open the Effect Directory window.
2. 1 Thru 5: select the fixtures.
3. [Effect 1]: select the effect from the Effect Directory window.

Or, using the command line:

• 1 Thru 5 Effect 1 Enter

23.7 Editing Effect Palettes

You can edit an effect palette by opening it in an editor window; you can then edit its contents in the same way as you edit values in any editor. See Applying and Editing Effects in the Programmer or Editor (p.259).

To open an effect in an editor:

1. Open + Effect: open the Effect Directory.
2. Open + [Effect 1]: open the editor for [Effect 1].

You can select the editor view (Table, Size, Rate, Offset, Length, N Shot) you wish to edit in. Also ensure that the editor is active with its Edit button selected.

You can also open an effects palette with the command line. For example:

• Effect 1 Open
23.8 **Deleting Effect Palettes**

To delete an effect palette using the commandline:

1. **Effect 1 Delete** : deletes Effect Palette 1.
2. Click OK to confirm the delete.

Or, from the Effect Directory:

1. Press and hold Delete whilst selecting the palette to be deleted from directory.
2. Release the Delete key. A dialog will appear asking you to confirm the delete.
3. Click OK.

Tip

If you prefer not to be asked to confirm the delete action, select Don't Ask Me Again in the confirmation window. You can reenable the confirmation by going to Setup → Preferences → Programming and selecting Confirm before deleting directory items.

23.9 **Copying and Moving Effect Palettes**

To make a copy of an effect palette in a new location:

- **Effect 1 Copy; Effect; 2 Enter** : copies the contents of Effect Palette 1 to Effect Palette 2.

- **Effect; 1 Position; 2 Copy Effect 2 Enter** : copies fixtures that are in Effect Palette 1 and in Position 2 into Effect Palette 2.

Similarly, to move an effect palette to a new location:

- **Effect; 1 Move Effect; 2 Enter** : moves the contents of Effect Palette 1 to Effect Palette 2, leaving 1 empty.

If the destination effect palette already exists, you will be asked to choose an option: Insert, Merge and Replace (p.198).
Section 24: Cuelist Playback

To play back a cuelist, it needs to be attached to a master. Masters can be either Physical, using the faders and controls on the front panel of the console, or Virtual, using on-screen master controls.

24.1 Playing Back from a Physical Master

Wholehog consoles have ten physical masters that cuelists can be attached to for playback. You can also move cuelists between masters, or copy them so that you create a copy of the cuelist on a new master. By attaching playback or expansion wings you can add more physical masters to a Wholehog system.

24.1.1 Attaching Cuelists to Masters

Cuelists are automatically attached to a master when you create them with the Record, Choose syntax; see Recording to a Cuelist on a Master (p.211). Otherwise, to attach a cuelist to a master:

- List 1 Move Choose : attaches Cuelist 1 onto the chosen master.

Tip

You can reference several cuelists to different masters using pages, see Working with Pages (p.303).

Moving and Copying Cuelists between Masters

Moving a cuelist between masters will detach it from its original master. Copying a cuelist between masters will leave the cuelist in its original location, and attach a copy of the cuelist to the new location.

To move a cuelist:

1. Press the Choose key of the master that you want to move the cuelist from.
2. Move
3. Press the Choose key of the master that you want to move the cuelist to.

To copy (and so duplicate) a cuelist:

1. Press the Choose key of the master that you want to copy the cuelist from.
2. Copy
3. Press the Choose key of the master that you want to copy the cuelist to.
Detaching a Cuelist from a Master

To detach a cuelist from a master:

- Delete + Choose: detaches the cuelist from the chosen master.

Note that this will not delete the cuelist itself or remove it from the cuelist directory, only detach it from the master.

24.1.2 Controlling Cuelist Playback

Once assigned to masters, cuelists can be played back using the master's controls, or using the main controls.

Master Controls

Each of the ten masters has a Choose, Go, Halt/Back and Flash key, as well as a fader; see Figure 24.1, “The Master Controls”.

![Figure 24.1. The Master Controls](image)

By default, the controls work as follows:

- **Choose**: allows the master to be selected. If the blue LED is illuminated then it is the chosen master, and you can use the main playback controls to control this master.

- **Go**: if the cuelist is inactive pressing Go will activate it onstage. If the cuelist is already active then pressing Go will run the next cue, or restart paused fades (see Halt/Back below).
• **Halt/Back**: pauses any running fades. If there are no running fades then pressing Halt/Back will start a fade back to the previous cue.

• **Fader**: controls the intensity of fixtures under the control of this playback. When the fader is at full, fixtures appear on stage at their programmed intensity. As the fader level is reduced, the intensity of fixtures is reduced proportionally.

• **Flash**: momentarily puts the intensity of fixtures under the control of this playback to their full programmed value, as if the fader had been put to maximum.

You can customise the function of master controls to suit the requirements of the user or a particular show; see *Configuring Playback Controls* (p.313).

Tip

Pressing or clicking on the Playback Bar is equivalent to pressing that master’s Choose key.

The Main Controls

The main playback controls, positioned to the right of the masters (see Figure 24.2, “The Main Playback Controls”) work with the currently chosen master. You can also use them with another master by holding down the required Choose key while pressing a key from the main controls.

The main playback control keys are:

- **Assert**: reasserts control of fixture parameters by the chosen master if other masters have taken control under the Latest Takes Precedence rule; see *Asserting One Cuelist Over the Others* (p.276).
- **Release**: releases the chosen master's control of fixture parameters, making the cuelist inactive; see *Releasing a Cuelist on a Master* (p.268).

- **Goto**: you can use the Goto key with the command line to go to a specified cue in the chosen cuelist. For example:
 - Goto 3, Enter: the cuelist on the chosen master plays cue 3.

- **Skip Forward/Skip Back**: steps forward or backward through the chosen cuelist by one cue. Cue timing information will not be used - the cue appears on stage immediately.

- **Halt/Back**: pauses any running crossfades on the chosen master. If there are no running crossfades then pressing Halt/Back will start a fade back to the previous cue.

- **Go**: if the chosen cuelist is inactive pressing Go will activate it onstage. If the cuelist is already active then pressing Go will run the next cue, or restart paused crossfades (see Halt/Back below).

24.1.3 Releasing a Cuelist on a Master

You can remove a cuelist's look from the stage, so that it relinquishes control of all fixture parameters and effectively turns the cuelist's output off; this is known as releasing the cuelist.

To release a cuelist on a master:

- Release: releases the currently chosen master.

Or:

- Release + Choose: use the Choose key of the master with the cuelist you wish to release.

Pressing Go after a cuelist is released will resume playback from the current cue. To have the cuelist go back to the beginning when it is released, see *Resetting Cuelists on Release* (p.270).

Tip

You can release all playbacks at once by pressing Pig + Release.

If you have no other cuelists, scenes, or groups active when you release the cuelist, then releasing returns all fixture parameters to their default values. A fixture's default parameter values will be determined by the Fixture Library; you can change the default values in the Edit Fixtures window, see *Assigning a Custom Default* (p.153).

If you have other cuelists, scenes or groups active, then control of fixture parameters may be transferred to one of them on releasing the cuelist; see *Running Multiple Cuelists* (p.274).
Release Time

When you release a cuelist and fixture parameters go to their default values, they do so over the release time, and this change may be visible if you have fixtures that are visibly live on stage (i.e. with intensities above zero). To assign the cuelist's release time:

1. Open + Choose : open the Cuelist window for the cuelist on the selected master.
2. Options → Cuelist : open the Options window and select the Cuelist pane.
 Alternatively, press Pig + Choose to open the Options window for the selected master.
3. Select the Release Time cell:

 ![Release Time cell]

4. Set 5, Enter : assign the desired release time.

You can also set a default release time for all newly created cuelists in the Cuelist pane of the User Preferences window:

- Setup → Preferences → Cuelist

 ![Default button]

 Tip

 If you have assigned a release time to a cuelist, and you want to revert to the default release time, press the Default button adjacent to the Release Time cell.

Auto Release

You can use auto release options to send fixture parameters to their default values at the end of a show, or to relinquish control of parameters for use by other cuelists when a cuelist is no-longer needed.

There are two Auto Release options for cuelists:

- **Auto-release at End**: Use this to automatically release the Cuelist at the completion of the fade and delay times of the last cue.
- **Add Release End Cue**: After the last cue has run another press of the Go key will release the cuelist rather than running the first cue again.

You can assign auto release options in the Playback Options window of each cuelist:

1. Open + Choose → Options → Cuelist
2. Select the desired release option from the Action at End of List menu:
You can also assign the default Auto Release options for new cuelists in the Action at End of List menu in the Cuelist pane of the User Preferences window:

- Setup → Preferences → Cuelist

Resetting Cuelists on Release

You can assign a cuelist to reset when released so it will proceed from the first cue when Go is pressed again. You can assign Reset on Release in the Playback Options window of each cuelist:

1. Open + Choose → Options → Cuelist
2. Select Reset on Release:

Alternatively, you can turn on Reset on Release for all new cuelists in the Cuelist pane of the User Preferences window:

- Setup → Preferences → Cuelist

Releasing on Another Go

When running several cuelists in a show, see Running Multiple Cuelists (p.274), you may want a cuelist to release when another cuelist is triggered. This effectively gives the cuelist the lowest possible playback priority; for more on playback priority, see Changing a Cuelist's Priority (p.276). You can set Release on Other Go in the Playback Options window of each cuelist:

1. Open + Choose → Options → Cuelist
2. Select Release on Other Go:
Alternatively, you can turn on Release on Other Go for all new cuelists in the Cuelist pane of the User Preferences window:

- Setup → Preferences → Cuelist

24.1.4 Cuelist Options

You can configure various options that determine the cuelist's priority, timing, and other properties that affect how it is played back in the Playback Options window of each cuelist:

1. Open + Choose : open the Cuelist window of the chosen master.
2. Options → Cuelist : open the Cuelist pane of the Cuelist Options window.

Alternatively, you can quickly access many cuelist options from the Cuelist Options Toolbar by holding down the Choose key of the master the cuelist is on:

Tip

You can quickly open the Playback Options window of a cuelist attached to a master by holding the Pig key and pressing the master's Choose key.

![Figure 24.3. The Cuelist Pane of the Playback Options Window](image)

You can configure the default settings for new cuelists in the Playback Defaults pane of the User Preferences window:
• Setup → Preferences → Playback Defaults

You can also customise the function of each of the master controls and main controls; see Configuring Playback Controls (p.313).

Tip

You can revert all of the settings in the Cuelist pane of the Playback Defaults window by pressing the Reset to Defaults button in the bottom left corner of the window.

Cuelist Timing and Rate Settings

You can assign several settings that control cuelist timing:

<table>
<thead>
<tr>
<th>Timing Function</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Time</td>
<td>2s</td>
<td>The time over which parameter values go to their default values when the cuelist is released; see Releasing a Cuelist on a Master (p.268).</td>
</tr>
<tr>
<td>Assert Time</td>
<td>2s</td>
<td>The time in which parameters go to their values determined by the cuelist when the cuelist is asserted; see Asserting One Cuelist Over the Others (p.276).</td>
</tr>
<tr>
<td>Back Time</td>
<td>2s</td>
<td>The time in which the cuelist steps back to the previous cue when the Halt key is pressed twice (to first halt the cuelist and then send it back).</td>
</tr>
<tr>
<td>Cuelist Rate</td>
<td>100%</td>
<td>Default proportion rate of the cuelist. A rate of 50% will double all cue timings, a rate of 200% will halve all cue timings.</td>
</tr>
</tbody>
</table>

Tip

If you have assigned a release, assert or back time to a cuelist, and you want to revert to the default time, press the Default button adjacent to the appropriate cell.

Cuelist Wrapping

Wrapping decides what happens to a cuelist when it reaches the final cue. Configure the wrapping in the Action at End of List menu:

- **Wrap to beginning of list**: Pressing Go after the final cue is reached sends the cuelist to its first cue.
- **Add release end cue**: Pressing Go after the final cue is reached releases the list and sends it to its first cue.
- **Auto-release at end**: The cuelist is released as soon as the last cue in the cuelist has completed all its fade and delay times.
• **Don't allow wrapping**: The cuelist stays on the final cue until released or sent backwards.

Action of go when Looping

When the cuelist is performing a continuous loop with the use of a link cue, you can configure the effect of pressing the Go key using the **Action of Go When Looping** menu:

<table>
<thead>
<tr>
<th>Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit loop immediately</td>
<td>Jumps the cuelist to the link cue at the end of the loop. Use a wait time on the cue after the link if you want to go to that cue automatically when exiting the loop.</td>
</tr>
<tr>
<td>Exit loop at end</td>
<td>Allows the loop to proceed to the last cue before jumping to the link cue at the end of the loop. Use a wait time on the cue after the link if you want to go to that cue automatically when exiting the loop.</td>
</tr>
<tr>
<td>Restart</td>
<td>Jumps immediately to the first cue in the loop.</td>
</tr>
<tr>
<td>Stop at next</td>
<td>Stops at the next cue in the loop.</td>
</tr>
<tr>
<td>Ignore</td>
<td>Ignores any press of the Go key whilst in a loop and the press is during an actively running wait time.</td>
</tr>
</tbody>
</table>

For more information on loops, see *Working with Loops and Links (p.242)*.

Action of Halt when Halted

By default, pressing the Halt key when a cue is halted steps the cuelist back a cue in the assigned back time, see *Cuelist Timing and Rate Settings (p.272)*. You can change this action using the **Action of Halt When Halted** menu:

<table>
<thead>
<tr>
<th>Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>The current cue remains halted.</td>
</tr>
<tr>
<td>Resume</td>
<td>The current cue continues to fade.</td>
</tr>
<tr>
<td>Release</td>
<td>The cuelist is released, see</td>
</tr>
<tr>
<td></td>
<td>Releasing a Cuelist on a Master (p.268).</td>
</tr>
</tbody>
</table>

Configuring Fader Actions

You can configure a master’s fader to trigger actions. A fader’s actions can be configured in the Master pane of the cuelist’s Playback Options window:

- **Go Off Zero**: The cuelist is triggered when the fader is moved from zero, as if you had pressed the Go key.
- **Release At Zero**: The cuelist is released when the fader returns to zero; see *Releasing a Cuelist on a Master (p.268)*.
Configuring Flash Button Actions

You can configure the level and actions of the Flash key:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash on/Flash off</td>
<td>On</td>
<td>Set to off to prevent accidentally flashing of a cuelist's contents. When on, pressing the Flash key will output the cuelist's intensities at their programmed values, irrespective of the fader position.</td>
</tr>
<tr>
<td>Level</td>
<td>100%</td>
<td>The proportion of the programmed intensity that a cuelist's contents is flashed to. If programmed levels are 60% and the flash level is set to 50% the flashed output intensity will be 30%.</td>
</tr>
<tr>
<td>Solo</td>
<td>Off</td>
<td>Flashes the contents of the cuelist to the full programmed level, whilst sending the intensities output by all other masters (including Virtual Masters) to zero.</td>
</tr>
<tr>
<td>Latch</td>
<td>Off</td>
<td>If set to on, the Flash key stays on as if it were being held down, until you press it again.</td>
</tr>
<tr>
<td>Go on flash</td>
<td>Off</td>
<td>The cuelist is triggered when you press the Flash key, as if you had pressed the Go key.</td>
</tr>
<tr>
<td>Release on flash</td>
<td>Off</td>
<td>The cuelist is released when you press the Flash key.</td>
</tr>
</tbody>
</table>

24.2 Running Multiple Cuelists

Because Wholehog consoles can simultaneously run ten cuelists on masters (and more if virtual masters and playback wings are used) the question arises as to which master actually has control over a particular fixture parameter. To decide which master takes precedence Wholehog OS applies the following rules:

- **For intensity parameters:** by default, intensity parameters are controlled on a Latest Takes Precedence (LTP) basis, therefore the value of an intensity parameter that appears in several cuelists will be output from the cuelist with the highest playback priority; see *Changing a Cuelist's Priority* (p.276). In addition, you can assign cuelist options so that a master works on a Highest Takes Precedence (HTP) basis; this means that if several masters have programming for the same intensity parameter, the highest programmed level will be output to stage. For a full discussion of HTP and LTP, see *HTP and LTP* (p.9).

- **For position, colour and beam parameters:** Wholehog OS deals with position, colour and beam parameters on a Latest Takes Precedence (LTP) basis. If several masters have programming for the same parameter then the value from the most recently activated master will override the value from previously activated masters. Parameters that are only programmed into a single master will remain at that value. When you release the most recently activated master, control will
be returned to the previously activated master. Alternatively you can assert a previously activated master’s parameters so that they override the most recently activated master; see *Asserting One Cuelist Over the Others* (p.276). You can prevent an (LTP) parameter from being overridden by master actions or assertions by giving its cuelist a high playback priority; see *Changing a Cuelist’s Priority* (p.276).

Tip
The Programmer, or the current editor with blind mode off, will always have priority over all masters and virtual masters.

24.2.1 Using HTP and LTP

You can switch a cuelist's precedence from LTP to HTP, allowing intensity parameters that have programming to be output at their highest level rather than the most recently activated level. For example, you may have a series of intensity chases that you wish to fade in and out over a stage look without overriding the intensity information of the original look, or when touring with smoke machines you may wish to manually boost the level of smoke programmed into the main cuelist to combat changes in air conditioning or venue size at specific points in the show.

For a full explanation of LTP, see *HTP and LTP* (p.9).

To assign a cuelist's precedence to HTP:

1. Open + Choose → Options → Cuelist
2. Select Use HTP:

Alternatively, you can turn on Use HTP for all new cuelists in the Cuelist pane of the User Preferences window:

- Setup → Preferences → Cuelist

Important
If you have an HTP master with the fader up (i.e. intensities above zero), then using Release or Pig + Release has no effect on the intensity parameters. To release the intensities of HTP masters, bring the fader to zero. For more on releasing cuelists, see *Releasing a Cuelist on a Master* (p.268).
24.2.2 Asserting One Cuelist Over the Others

When you have several cuelists active at the same time, control of fixture parameters programmed into one cuelist may be taken by another cuelist that also has programming for that fixture parameter. For example, if Cuelist 1 has programming for desk channels 1-3, and Cuelist 2 has programming for desk channels 3-6, then running a cue in Cuelist 2 will override the intensity parameter of desk channel 3.

You may want to return control of desk channel 3 to Cuelist 1 without having to run a cue in Cuelist 1; this is known as asserting Cuelist 1. Asserting a cuelist forces all fixture parameters to their programmed value in the cuelist.

To assert parameters on the cuelist attached to Master 3, for example, press and hold the Choose key for Master 3, and press the Assert key.

The Assert Time

When you assert a cuelist, the parameters that have been asserted change to their new values over the assert time. The default is 2 seconds, but you can assign your preferred assert time for each cuelist:

1. Open + Choose → Options → Cuelist
2. Select the Assert Time cell:

3. Set 5, Enter: change the assert time to 5 seconds.

Alternatively, you can assign the Assert Time for all new cuelists in the Cuelist pane of the User Preferences window:

- Setup → Preferences → Cuelist

Tip

If you have assigned an assert time to a cuelist, and you want to revert to the default assert time, press the Default button adjacent to the Assert Time cell.

24.2.3 Changing a Cuelist's Priority

Under the LTP rule, the most recent action determines the value of a fixture parameter; see Running Multiple Cuelists (p. 274). However, you can override this precedence by assigning cuelists different priorities, so that cuelists with a higher priority take precedence over those with a lower one. If their priority is equal, then the LTP rule is used to determine which cuelist will take precedence and determine the parameter's value.
A cuelist's default priority is 0, and you can assign the priority value in increments of 10. For example, if the priority of the cuelist attached to Master 5 is at default (0) and the priority of that on Master 4 is 50, then a Go triggered on Master 5 will not override common parameters currently active on Master 4. Conversely, you can apply a minus priority so if the cuelist on Master 3 has a priority of -50, common parameters on Master 5 will override those on Master 3.

To change a cuelist's priority:

1. Open + Choose → Options → Cuelist
2. Select the Playback Priority cell:

3. Set 50, Enter : change the priority to 50.

Alternatively, you can assign the Playback Priority for all new cuelists in the Cuelist pane of the User Preferences window:

- Setup → Preferences → Cuelist

In the event that two or more cuelists share the same priority level, normal LTP rules are applied.

Persist on Override

Wholehog OS automatically releases cuelists when all of their parameter contents have been overridden by other cuelists. However, sometimes it is useful to return to a cuelist's look when overriding cuelists have been released; in this case you can use Persist on Override. When this option is activated, the overridden cuelist will not automatically release and will remain active when the overriding cuelist is later released.

To turn Persist on Override on for a cuelist:

1. Open + Choose → Options → Cuelist
2. Select Persist on Override:

Alternatively, you can assign Persist on Override for all new cuelists in the Cuelist pane of the User Preferences window:

- Setup → Preferences → Cuelist
24.2.4 **Multiple Cuelists with Effects**

If a cuelist contains parameters that are running an effect, when another cuelist or scene changes the underlying values of those parameters the effect continues to run. Use Pile-Add FX to allow the second cuelist or scene to override the effect as well as the underlying values.

For example, to allow the cuelist on Master 10 override effects running on other masters:

1. **Open + Choose**: open the Cuelist window for Master 10.
2. **Options**: open the cuelist's Playback Options window.
3. Select the Cuelist pane and select Pile-Add FX:

![Pile-Add FX button]

24.3 **Playback with a Virtual Master**

You can run cuelists without assigning them to a physical master by using virtual masters. Virtual masters are always at full intensity, so the intensity of fixtures is that programmed in the cues. An almost unlimited number of virtual masters running different cuelists can be in operation at any one time.

You can operate virtual masters from the Cuelist Directory window, from the Cuelist window, or from the command line.

Tip

You can press List + Release to release all running cuelists playing back as virtual masters.

24.3.1 **Running Virtual Masters from the Cuelist Directory Window**

You can run cuelist virtual masters from the Cuelist Directory window:

- **Open + List**

Or:

- **List, List**

To run a cuelist, make sure that the Guard button in the Cuelist Directory window is deselected. Then press a cuelist button in the directory, and it will playback onstage, as if Go had been
pressed on a physical master. Holding your finger down on the cuelist's button is the equivalent of holding the master's Choose key, and you can then use the central playback controls.

The cuelist buttons in the directory are coloured to show the cuelist status:

- **Red**: the cuelist is active on stage.
- **Green**: the cuelist is running a cue.
- **Light Red**: the cuelist is halted.
- **Dark Red**: the cuelist is overridden.

24.3.2 Running Virtual Masters from the Cuelist Window

To run a cuelist virtual master from the cuelist window:

1. Open + List: open the Cuelist Directory window.
2. Check that the Guard button is depressed.
3. Open + [List 1]: open the required cuelist.
4. Press the Play Controls button in the Cuelist window. The on-screen playback controls will appear:

The controls are, from left to right, the Go, Halt/Back, Skip Back, Skip Forward, and Release buttons. These function in the same way as their front panel equivalents; see *The Main Controls* (p.267).
24.3.3 Running Virtual Masters from the Command Line

To run a cuelist on a virtual master from the command line:

- List 1, Enter: sends a Go command to cuelist 1.

24.4 Understanding Feedback for Cuelists

There are several ways in which you can tell the status of the console's output:

- The status of masters is shown by the playback control key LEDs and the on-screen Playback Bar.
- You can use a cuelist window to follow the progress of running cuelists.
- The total output of all fixtures' parameter values is shown in the Output window, and the total output of all fixture's intensities is shown in the Levels View window.

24.4.1 Control and Playback Toolbar Feedback

Playback Control LEDs

The LEDs of the playback controls give information about the cuelist's status:

- **Go key (Green):** When solidly lit, this indicates that a fade is in progress. When flashing it indicates that a fade has been paused.
- **Halt/Back key (Red):** When solidly lit, this indicates that this playback is controlling parameters other than intensity. When flashing it indicates that its control of those parameters has been overridden by other playbacks.
- **Flash key (Red):** When solidly lit, this indicates that this playback is controlling intensity. When flashing it indicates that its control of intensity has been overridden by other playbacks.

The Playback Bar

![Playback Bar](image)

Figure 24.4. The Playback Bar

The Playback Bar is located at the bottom of the left touchscreen, giving feedback for each master; see Figure 24.4, “The Playback Bar”. For each master, the Playback Bar displays the following information:
• If the master is empty, its number is shown. Console masters are numbered 1 to 10, while masters on playback wings are numbered 1/1 to 1/10 for the first wing, 2/1 to 2/10 for the second wing, and so on.

• The number and name of the cuelist. This is shown in blue if the master has been held over after a page change; see Options When Changing Page (p.304). The name and number will appear in lavender if the master is from a template page; see The Template Page (p.309).

• The current cue and its overall time. When the cue is running, it is displayed in green text and the time counts down. If the cuelist has been released, then is displayed, with the next cue shown below.

• The next few cues and their times. If you want to see more cues, click and drag the top of the Playback Bar upwards to make it larger.

• The master level as a percentage. If the master is below 100%, then a red bar appears indicating the level. It is possible for the position of the physical fader to be different to the master level of the cuelist, in which case the vertical bar will be blue; see Matching Levels When Changing Page (p.305).

• Whether the cuelist is a chase. If it is, then its rate in BPM is shown; see Using a Cuelist as a Chase (p.287).

• Any options set for the cuelist. The symbols used are shown below.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>The cuelist is working under the HTP rule.</td>
</tr>
<tr>
<td>P</td>
<td>The cuelist is set to Persist on Override. See Changing a Cuelist's Priority (p.276).</td>
</tr>
<tr>
<td>R</td>
<td>The cuelist is set to Release on Other Go. See Releasing on Another Go (p.270).</td>
</tr>
<tr>
<td>🔴</td>
<td>The cuelist has a high priority. See Changing a Cuelist's Priority (p.276).</td>
</tr>
<tr>
<td>🔴</td>
<td>The cuelist has a low priority. See Changing a Cuelist's Priority (p.276).</td>
</tr>
<tr>
<td>🟢</td>
<td>The scene uses the master as an IPCB fader. See IPCB Fader Mode (p.301). Note that this applies to scenes only.</td>
</tr>
<tr>
<td>💦</td>
<td>The cuelist uses the master as a manual fader. See Manual Crossfading (p.286).</td>
</tr>
</tbody>
</table>

Using the Playback Bar with Playback Wings

Whether wings are connected or not, multiple Playback Bars can be displayed using the Wings pane of the Control Panel. You can drag these and dock them at the edge of an external display placed adjacent to the wing, to make cross-referencing the screen display and the physical wing playback controls easier.

If your external display is set to a resolution higher than 1024x768, you can drag the ends of the Playback Bar to ‘stretch’ it to better align with the spacing of the controls of the wing.

For information on adding and setting up playback wings, see Adding Playback Wings (p.93).
24.4.2 Cuelist Feedback

You can view in detail the running of the cues of a specific cue list by opening the cue list window (see Figure 24.5, “The Cuelist Window with a Cue Running”):

- Open + Choose

Or:

- Double click the Playback Bar above the required cue list.

Or:

- Open + [List 1]: select the cue list from the cue list directory.

![The Cuelist Window with a Cue Running](image)

The current cue is displayed with an arrow in the wait column of the cue list. When triggered, the arrow turns green and the letter R (for Running) is displayed; the cue’s progress is indicated by the percentage completed in the same column. Pausing a cue will turn the arrow red and the letter H (Halted) is displayed.

Customising Cuelist Feedback

There are several view options selected by buttons at the top of Cuelist window:

- **Play Controls**: displays alternative play controls at the top of the Cuelist window. These are useful for running virtual masters, see *Running Virtual Masters from the Cuelist Window* (p.279).

- **View Cue**: opens the current cue (as denoted by an arrow in the wait column) in an editor.

- **Follow Cue**: selecting Follow Cue from the top of the Cuelist window will make the list of cues scroll to keep the current cue in view as the cues are played back.

- **Follow Chosen**: during playback, you may not want to have multiple Cuelist windows open. Select Follow Chosen from the top of any Cuelist window so Wholehog OS automatically displays the cue list of the currently chosen master. If Follow Chosen is off, the same cue list will always be shown in the window irrespective of the chosen master.

- **View Timecode**: turn the display of timecode information on or off.
24.4.3 The Output Window

The Output window displays the output value of all parameters controlled by Wholehog OS from all cuelists, virtual cuelists, scenes, the Programmer and other editors, and parked parameters. It provides an accurate indication of the status of shared parameter values when multiple cuelists are running simultaneously; see Figure 24.6, “The Output Window”.

To open the Output window:

- Press and hold the Open key, then select Output from the Main Toolbar.

Or:

- Select Output from the View Toolbar at the top of the left hand touchscreen.

![Image of the Output Window]

Figure 24.6. The Output Window

The Output window by default displays raw parameter values; you can configure it via buttons at the top of the window to display output information in the following ways:

- **Values**: displays the raw parameter values.
- **Effects**: displays the base value before the effect is applied, along with a percentage indication of the effect cycle.
- **Sources**: displays the source that currently has control of a parameter, for example, the Programmer or a cuelist and cue number.
- **Show Palettes**: as with sources, displays the palette that is supplying the parameter value.
- **Compact**: Compacts the display of information in the window; see Compact Mode (p.105).

Crossfading values will appear in the Output window in the following colors:
The Levels View Window

The Levels View window displays the output value of all intensities controlled by Wholehog OS from all cuelists, virtual cuelists, scenes, the Programmer and other editors, and parked parameters. It provides an accurate indication of the status of shared intensity values when multiple cuelists are running simultaneously; see Figure 24.7, “The Levels View Window”.

To open the Levels View window:

- Press and hold the Open key, then select Levels from the Main Toolbar.

![Figure 24.7. The Levels View Window](image)

The Levels View window by default displays raw intensity values; you can configure it via buttons at the top of the window to display output information in the following ways:

- **Values**: displays the raw parameter values.
- **Source**: displays the source that currently has control of an intensity, for example, the Programmer or a cuelist and cue number.
• **Show Palettes:** as with source, displays the palette that is supplying the intensity value.

Crossfading values will appear in the Levels View window in the following colors:

![Crossfading Colors](image)

24.5 Advanced Cuelist Playback

24.5.1 Overriding Cuelist Rate During Playback

You can alter all rate timings of the currently chosen cuelist in two ways:

- **With the Rate Wheel:** The centre-sprung wheel on the left of the console allows the fade rate to be momentarily modified to speed up or slow down crossfades.

- **With the left-hand Parameter Wheel:** When you hold down a Choose key, you can use the left-hand parameter wheel to control the crossfade rate of the selected master. This modified rate will persist until you make another change. You can also set this rate in the Cuelist Options window, and you can set the default rate for new cuelists in Setup → Preferences → Cuelist.

![Cuelist Rate](image)

The rate level is displayed as a percentage with a default of 100%. A cuelist running a cue that is 10 seconds long will complete the cue in 5 seconds with an accelerated rate of 200%, or in 20 seconds with a decelerated rate of 50%.
24.5.2 **Overriding Cuelist Effect Rate During Playback**

You can alter effect timings for all effects in the currently chosen cuelist or scene with the second parameter wheel when holding down **Choose**. Adjusting this rate will increase or decrease the rate of all effects within the assigned cuelist or scene. This modified rate will persist until you make a further change. You can also set this rate in the Cuelist Options window, and you can set the default rate for new cuelists in **Setup → Preferences → Cuelist**.

![Cuelist Effect Rate](image)

The Cuelist Effect Rate level is displayed as a percentage with a default of 100%. The programmed rate of running effects will be accelerated with a rate above 100% and decelerated with a rate below 100%.

24.5.3 **Manual Crossfading**

You can assign any cuelist to be operated manually, allowing you to perform the crossfades from one cue to the next manually using the fader. Once a cuelist's Manual Fade option is selected, the Master's fader will no longer control intensity but instead the crossfade progress of all parameters from the current cue to the next; starting when moved from any end stop, finishing when the opposite end stop is reached.

If you select Manual Fader mode when the fader is at 50%, a manual fade cannot take place until the fader is moved to and then from an end stop, further moves from end stops will manually work through the cuelist sequentially.

To assign a cuelist's Manual Fade function:

1. Open **+ Choose → Options → Master**
2. Select **Manual Crossfader** from the Fader menu:

![Fader](image)

Manual crossfade mode will be indicated on the Playback Bar above the selected master by ⌈.

Tip

You can still run cues to time when manual fader mode is selected by pressing the master's Go key. Note that you have no individual fader.
control of intensity and accidentally moving a fader will start to run the next cue manually.

24.5.4 **IPCB Fader Mode**

You can adjust the output values of any intensity, position, colour or beam parameter information in any cuelist by assigning its fader as a IPCB fader.

To assign a cuelist to use the IPCB fader function:

1. Open the Programmer from the Main Toolbar. In the Programmer select the fixtures and parameters that you wish to adjust with the fader, then assign a maximum level.
2. Record 1 Enter : record the cue to the chosen master.
3. Pig + Choose → Playback Options : open the options window for the cuelist's master.
4. In the Master pane, select IPCB Crossfader from the Fader drop down menu.

You can now adjust the value of the parameters contained in the IPCB fader cue by adjusting the master's fader level.

24.5.5 **Using a Cuelist as a Chase**

You can use a cuelist to make a chase. Any wait times are ignored, and each cue becomes a step in the chase where the rate is set in Beats Per Minute (BPM).

To use a cuelist as a chase:

1. Open + Choose → Options → Cuelist
2. Select Is a Chase:

The Playback Bar displays Chase and the rate (which defaults to 120 bpm):

Each cue step is by default equivalent to a beat, so to set a chase that advances every second the rate needs to be 60 bpm. By holding down the master's Choose key you can modify the chase rate and crossfade times on the parameter wheels:
When you select Is a Chase the Cuelist pane of the Playback Options window, the following chase options appear:

- **Chase Rate**: the speed of the chase defined in Beats Per Minute (bpm).
- **Crossfade**: the amount of each step that a crossfade is active for, as a percentage.
- **Step Length**: by default each cue step is the equivalent to a beat. This is helpful when you enter a rate using Tap Sync, but then wish the chase to step at half or double speed. For more on Tap Sync, see *Adjusting Chase Rate with Tap Sync* (p.289).
- **Direction**: four directions are available: Up, stepping up through cue numbers; Down, stepping down through cue numbers; Random, stepping randomly through cue numbers; and Bounce, stepping up then down through cue numbers.

You can also configure the following loop types in the Cuelist pane of the Playback Options window:

- **Continuous**: the chase steps indefinitely until paused or released.
- **Stop On Last**: the chase stops at the last cue in the cuelist until released or triggered again with a Go.
- **Release On Last**: the cuelist chase is released when it reaches the final step.
- **Stop On First**: the chase completes one cycle and stops on the first cue until triggered again.
If any loop type other than continuous is chosen then you can assign the number of cycles the chase completes before the loop behaviour is actioned. Selecting Release on Stop releases the chase cuelist either when it stops because of an actioned loop behaviour or because of a manual stop using the Halt key.

Tip
The Playback Options of a master can be quickly accessed by holding Pig and pressing the master’s Choose key.

Adjusting Chase Rate with Tap Sync

A cuelist chase can be manually sync’ed to a beat, such as a piece of music, using Tap Sync. Once sync’ed Wholehog OS maintains the chase rate until a new one is assigned.

To adjust the rate of a chase using Tap Sync, hold down the Choose key of the master the chase is attached to, while pressing the master’s Go key repeatedly to the required beat. Wholehog OS will learn the speed of the chase from you, in a minimum of two beats; after this, you can release the Choose key.

Note that you can only use Tap Sync with chases loaded onto physical masters, not virtual ones.

24.5.6 Cuelists and Tracking

You can define how a cuelist deals with tracking in the Cuelist pane of the Playback Options window (shown in Figure 24.3, “The Cuelist Pane of the Playback Options Window”):

- Open + Choose → Options → Cuelist

The options are:

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue Only</td>
<td>Off</td>
<td>Use this to run the cuelist without tracking. Any parameter that has no value in a cue will go to its default value, rather than tracking through from the previous cue.</td>
</tr>
<tr>
<td>Track Through Loops</td>
<td>Off</td>
<td>Determines whether parameter values track from the end of a loop back to the beginning. See Tracking Through Loops (p.243) for a full description.</td>
</tr>
</tbody>
</table>

24.5.7 Triggering Automatic Tasks When a Cue Runs

You can use Trigger Macros to perform a variety of tasks when a cue runs. Macros are simple text instructions placed in the cue’s Macro cell:

1. Open + Choose : open the Cuelist window.
2. Select the Macro cell for the desired cue, and press Set.
3. Type in the Macro command, then press Enter.
For a full description of the available macro commands, see *Automating the Console Using Macros (p.335)*.

Tip

You can display a list of available commands on the console by selecting the Macro cell in the Cuelist window and pressing the Set key.

Tip

You can enable trigger macros to occur when using the Back key to go backwards through a cuelist. See *Configuring Master Controls (p.315)*.
Section 25: Scene Playback

To play back a scene, it needs to be attached to a Master. Masters can be either Physical, using the faders and controls on the front panel of the console, or Virtual, using on-screen master controls.

25.1 Playback Attached to a Physical Master

Wholehog consoles have ten physical masters that scenes can be attached to for playback. You can also move scenes between masters, or copy them so that you create a copy of the scene on a new master. By attaching playback or expansion wings you can add more physical masters to a Wholehog system.

25.1.1 Attaching a Scene to a Master

To attach a scene to a master:

- Scene 1 Move, Choose

Alternatively you can select the scene from the Scene Directory:

- [Scene 1] Move, Choose

The name of the scene and the fader level is shown on the Playback Bar immediately above the master:

Moving and Copying Scenes between Masters

Moving a scene between masters will detach it from its original master. Copying a scene between masters will leave the scene in its original location, and attach a copy of the scene to the new location.

To move a scene:

1. Press the Choose key of the master that you want to move the scene from.
2. Move
3. Press the Choose key of the master that you want to move the scene to.

To copy (and so duplicate) a scene:
1. Press the Choose key of the master that you want to copy the scene from.
2. Copy
3. Press the Choose key of the master that you want to copy the scene to.

Detaching a scene from a Master

To detach a scene from a master:

- Delete + Choose : detaches the scene from the chosen master.

Note that this will not delete the scene itself or remove it from the scene directory, only detach it from the master.

25.1.2 Playing Back the Scene

To play back the scene, press the Go key:

![Go key]

The scene will fade in with the times recorded with it, and the fader acts as an inhibitive master for the scene. If the fader is below 100%, then the Flash key will momentarily bring the intensity parameters in the scene to their full programmed level, just as if the fader had been put to full.

You can also play scenes back using the Go key of the main playback controls, positioned to the right of the masters (see Figure 24.2, “The Main Playback Controls”). These controls work with the currently chosen master; you can also use them with another master by holding down the required Choose key while pressing a key from the main controls. See Controlling Cuelist Playback (p.266).

Tip

You can configure the way the playback controls work, for example to set the level that the Flash key brings the scene to, or to disable it altogether. See Configuring Playback Controls (p.313).

25.1.3 Releasing a Scene on a Master

You can remove a scene's look from the stage, so that it relinquishes control of all fixture parameters and effectively turns the scene's output off; this is known as releasing.

To release a scene on a master:
Release: releases the currently chosen master.

Or:

Release + Choose: use the Choose key of the master with the scene you wish to release.

Tip
You can release all playbacks at once by pressing Pig + Release.

If you have no other cuelists, scenes, or groups active when you release the scene, then releasing returns all fixture parameters to their default values. A fixture's default parameter values will be determined by the Fixture Library when the fixture is created; you can change the default values in the Edit Fixtures window, see Assigning a Custom Default (p.153).

If you have other cuelists, scenes or groups active, then control of fixture parameters may be transferred to one of them on releasing the scene; see Running Multiple Scenes (p.294).

Release Time

When you release a scene and fixture parameters go to their default value, they do so over the release time, and this change may be visible if you have fixtures that are visibly live on stage (i.e. with intensities above zero). To assign the scene's release time:

1. Open + Choose: open the Scene window for the scene on the selected master.
2. Options → Scene: open the Options window and select the Scene pane.
3. Select the Release Time cell:
4. Set 5, Enter: assign the desired release time.

You can also set a default release time for all newly created scenes in the Scene pane of the User Preferences window:

• Setup → Preferences → Scene

Tip
If you have assigned a release time to a scene, and you want to revert to the default release time, press the Default button adjacent to the Release Time cell.
Releasing on Another Go

When running several cuelists or scenes in a show, you may want a scene to release when another cuelist or scene is triggered. This effectively gives the scene the lowest possible playback priority; for more on playback priority, see Changing a Scene’s Priority (p.296). You can set Release on Other Go in the Scene window of each scene window:

1. Open + Choose → Options → Scene
2. Select Release on Other Go:

Alternatively, you can turn on Release on Other Go for all new scenes in the Scene pane of the User Preferences window:

- Setup → Preferences → Scene

25.1.4 Scene Options Toolbar

You can quickly access many scene options from the Scene Options Toolbar by holding down the Choose key of the master the scene is on:

25.2 Running Multiple Scenes

Because Wholehog consoles can simultaneously run ten scenes or cuelists on masters (and more if virtual masters and playback wings are used) the question arises as to which master actually has control over a particular fixture parameter. To decide which master takes precedence Wholehog OS applies the following rules:

- **For intensity parameters**: by default, intensity parameters are controlled on a Latest Takes Precedence (LTP) basis, therefore the value of an intensity parameter that appears in several scenes will be output from the scene with the highest playback priority; see Changing a Scene’s Priority (p.296). In addition, you can assign scene options so that a master works on a Highest Takes Precedence (HTP) basis; this means that if several masters have programming for the same intensity parameter, the highest programmed level will be output to stage. For a full discussion of HTP and LTP, see HTP and LTP (p.9).

- **For position, colour and beam parameters**: Wholehog OS deals with position, colour and beam parameters on a Latest Takes Precedence (LTP) basis. If sev-
eral masters have programming for the same parameter then the value from the most recently activated master will override the value from previously activated masters. Parameters that are only programmed into a single master will remain at that value. When you release the most recently activated master, control will be returned to the previously activated master. Alternatively you can assert a previously activated master’s parameters so that they override the most recently activated master; see Asserting One Scene Over the Others (p.295). You can prevent an (LTP) parameter from being overridden by master actions or assertions by giving its scene a high playback priority; see Changing a Scene’s Priority (p.296).

Tip
The Programmer, or the current editor with blind mode off, will always have priority over all masters and virtual masters.

25.2.1 Using HTP and LTP
You can switch a scene's precedence from LTP to HTP, allowing intensity parameters that have programming to be output at their highest level rather than the most recently activated level. For example, when touring with smoke machines you may wish to manually boost the level of smoke by creating a smoke scene with smoke levels higher than those programmed into the main cuelist to combat changes in air conditioning or venue size at specific points in the show.

For a full explanation of LTP, see HTP and LTP (p.9).

To assign a scene's precedence to HTP:

1. Open + Choose → Options → Scene
2. Select Use HTP:

Alternatively, you can turn on Use HTP for all new scenes in the Scene pane of the User Preferences window:

• Setup → Preferences → Scene

25.2.2 Asserting One Scene Over the Others
When you have several scenes or cuelists active at the same time, control of fixture parameters programmed into one scene or cuelist may be taken by another scene or cuelist that also has programming for that fixture parameter. For example assuming both scenes are LTP, if Scene 1 has programming for desk channels 1-3, and Scene 2 has programming for desk channels 3-6, then running a cue in Scene 2 will override the intensity parameter of desk channel 3.
You may want to return control of desk channel 3 to Scene 1 without having to run Scene 1; this is known as asserting Scene 1. Asserting a scene forces all fixture parameters to their programmed value in that scene.

To assert parameters in the scene attached to Master 3, for example, press and hold the Assert key, and press the Choose key for Master 3.

The Assert Time

When you assert a scene, the parameters that have been asserted change to their new values over the assert time. The default is 2 seconds, but you can assign your preferred assert time for each scene:

1. Open + Choose → Options → Scene
2. Select the Assert Time cell:

![Assert Time Cell](image)

3. Set 5, Enter: change the assert time to 5 seconds.

Alternatively, you can assign the Assert Time for all new scenes in the Scene pane of the User Preferences window:

- Setup → Preferences → Scene

Tip

If you have assigned an assert time to a scene, and you want to revert to the default assert time, press the Default button adjacent to the Assert Time cell.

25.2.3 **Changing a Scene's Priority**

Under the LTP rule, the most recent action determines the value of a fixture parameter; see *Running Multiple Scenes* (p.294). However, you can override this precedence by assigning scenes different priorities, so that scenes with a higher priority take precedence over those with a lower one. If their priority is equal, then the LTP rule is used to determine which scene will take precedence and determine the parameter's value.

A scene's default priority is 0, and you can assign the priority value in increments of 10. For example, if the priority of the scene on Master 9 is at default (0) and the priority of that on Master 8 is 50, then a Go triggered on Master 9 will not override common parameters currently active on Master 8. Conversely, you can apply a minus priority so if the scene on Master 10 has a priority of -50, common parameters on Master 9 will override those on Master 10.
To change a scene's priority:

1. Open + Choose → Options → Scene
2. Select the Playback Priority cell:

3. Set 50, Enter: change the priority to 50.

Alternatively, you can assign the Playback Priority for all new scenes in the Scene pane of the User Preferences window:

- Setup → Preferences → Scene

Persist on Override

Wholehog OS automatically releases scenes when all of their parameter contents have been overridden by other scenes or cuelists. However, sometimes it is useful to return to a scene's look when overriding cuelists or scenes have been released; in this case you can use Persist on Override. When this option is activated, the overridden scene will not automatically release and will remain active when the overriding scene or cuelist is later released.

To turn Persist on Override on for a scene:

1. Open + Choose → Options → Scene
2. Select Persist on Override:

Alternatively, you can assign Persist on Override for all new scenes in the Scene pane of the User Preferences window:

- Setup → Preferences → Scene

25.2.4 Multiple Scenes with Effects

If a scene has parameters that are running an effect, when another cuelist or scene changes the underlying values of those parameters the effect continues to run. Use Pile-Add FX to allow the cuelist or scene to override the effect as well as the underlying values.

For example, to allow the scene on Master 10 override effects running on Master 9:
1. Open + Choose: open the Scene window for Master 10.
2. Options: open the scene's Scene Options window.
3. Select the Scene pane and select Pile-Add FX.

25.3 **Playback with a Virtual Master**

You can play back scenes without assigning them to a physical master by using Virtual Masters, run directly from the Scene Directory. Virtual masters are always at full intensity, so the level of fixtures is that recorded in the scene. An almost unlimited number of virtual masters running different scenes can be in operation at any one time.

You can operate scene virtual masters from the Scene Directory window or from the command line.

Tip

You can press Scene + Release to release all running scenes playing back as virtual masters.

25.3.1 **Running Virtual Masters from the Scene Directory Window**

You can run scene virtual masters from the Scene Directory window:

- Open + Scene

Or:

- Scene, Scene

To run a scene, make sure that the Guard button in the Scene Directory window is deselected. Then press a scene button in the directory, and it will playback onstage, as if Go had been pressed on a physical master. Holding your finger down on the scene's button is the equivalent of holding the master's Choose key, and you can then use the central playback controls.

The scene buttons in the directory are coloured to show the scene status:

- **Red**: the scene is active on stage.
- **Green**: the scene is running.
- **Light Red**: the scene is halted.
- **Dark Red**: the scene is overridden.
25.3.2 Running Virtual Masters from the Scene Window

To run a scene virtual master from the Scene window:

1. Open + Scene : open the Scene Directory window.
2. Check that the Guard button is depressed.
4. Press the Play Controls button in the Scene window. The on-screen playback controls will appear:

 The controls are, from left to right, the Go, Halt/Back, Skip Back, Skip Forward, and Release buttons. These function in the same way as their front panel equivalents; see The Main Controls (p.267). Note that Skip Back and Skip Forward are not used with scenes.

25.3.3 Running Scene Virtual Masters from the Command Line

To run a scene on a virtual master from the command line:

- Scene 1, Enter : sends a Go command to scene 1.
25.4 Understanding Feedback for Scenes

There are several ways in which you can tell the status of the console’s output. This section describes the information shown on the Playback Bar for scenes; the playback control LEDs on the front panel of the console, and the Output window, work in the same way for scenes as for cuelists, and are described in Understanding Feedback for Cuelists (p.280).

![The Playback Bar](image)

Above the masters is a status bar on screen giving feedback for each master; see Figure 25.1, “The Playback Bar”. For a scene it displays:

- The scene name and time.
- If the scene has been released, then is displayed.
- The master level as a percentage. If the master is below 100%, then a red bar appears indicating the level. It is possible for the position of the physical fader to be different to the master level of the scene, in which case the vertical bar will be blue; see Matching Levels When Changing Page (p.305).
- Any options set for the scene. The symbols used are shown below.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![H]</td>
<td>The scene is working under the HTP rule.</td>
</tr>
<tr>
<td>![P]</td>
<td>The scene is set to Persist on Override. See Changing a Scene’s Priority (p.296).</td>
</tr>
<tr>
<td>![R]</td>
<td>The scene is set to Release on Other Go. See Releasing on Another Go (p.294).</td>
</tr>
<tr>
<td>![H]</td>
<td>The scene has a high priority. See Changing a Scene’s Priority (p.296).</td>
</tr>
<tr>
<td>![L]</td>
<td>The scene has a low priority. See Changing a Scene’s Priority (p.296).</td>
</tr>
<tr>
<td>![M]</td>
<td>The scene uses the master as an IPCB fader. See IPCB Fader Mode (p.301).</td>
</tr>
</tbody>
</table>

25.5 Advanced Scene Playback

25.5.1 Overriding Rate During Playback

You can alter the fade rate timings of the currently chosen scene in two ways:
• **With the Rate Wheel:** The centre-sprung wheel on the left of the console allows the fade rate to be momentarily modified to speed up or slow down the fading in of a scene.

• **With the left-hand Parameter Wheel:** When you hold down a Choose key, you can use the left-hand parameter wheel to control the crossfade rate of the selected master. This modified rate will persist until you make another change.

The rate level is displayed as a percentage with a default of 100%. A scene with a fade of 10 seconds will complete in 5 seconds with an accelerated rate of 200%, or in 20 seconds with a decelerated rate of 50%.

25.5.2 IPCB Fader Mode

You can inhibit the output values of any intensity, position, colour or beam parameter information in any other scene or cuelist by using a scene as a IPCB Fader. For example, when touring a rig distances between the stage and the FOH positions may vary, and therefore there may be instances that you may wish to limit the level of these fixtures in order to maintain a balanced look on stage.

To create an inhibitive master using IPCB fader function:

1. Open the Programmer from the Main Toolbar. In the Programmer select the fixtures and parameters you wish to inhibit, then assign a maximum inhibit level.
2. **Record Scene 1 Enter:** record the scene.
3. **Scene 1 Move Choose:** place the scene on a free master.
4. **Pig + Choose → Playback Options:** open the scene master's options window.
5. In the Master pane, select IPCB Crossfader from the Fader drop down menu.

Once created you can inhibit the value of parameters contained in the IPCB fader scene by adjusting the scene's fader level.
Section 26: Working with Pages

Pages allow you to predefine layouts of cuelists, scenes and inhibitive masters, so that they can be loaded quickly onto the available playback masters.

For a concert, for example, cuelists can be organized in one page per song, so that before each performance it is possible to re-arrange the pages to reflect the current running order of the songs. One cuelist can be used several times within a page or on several pages, or it can be unique to a specific page. A template page can define certain masters to be the same on every page.

Pages can be accessed from the Page Directory:

- Open + Page
- Page, Page

For general information on working with directories, see Working with Directories (p.108).

26.1 Creating a New Page

Selecting a page that currently does not exist will automatically create a blank page and load it onto the masters. Cuelists, scenes and inhibitive masters can then be assigned to the masters on the newly created page.

To create a new page:

2. Make sure that Guard is not selected in the Page Directory, otherwise you will not be able to create a new page using this method.
3. Press a button in the Page Directory where you want to create the new page. A new, blank page is created.
4. Set [name] Enter: name the page.

Or, using the command line:

1. Page [number] Enter: a new, blank page is created.
2. Set [name] Enter: name the page.

Important

When you create a new, blank page, it is automatically loaded onto the physical playback masters. By default, any cuelists, scenes and inhibitive masters that were previously loaded will be released, and their contents...
will no longer be output from the console. You can change this behaviour; see Options When Changing Page (p.304).

26.2 Changing Page

Changing the page loads a different set of cuelists, scenes and/or inhibitive masters onto the physical playback masters. You can do this in several ways:

- Press the Next Page key to go to the next page in the Page Directory. To go to the previous page hold Pig and press Next Page.
- Using the command line: Page [number] Enter.
- Select the desired page from the Page Directory window. Check that the Guard button in the directory window is not selected.
- Use a macro within a cuelist; see Automating the Console Using Macros (p.335).
- Set a trackball key to select the next page; see Trackball Keys (p.65).

The current page is shown in the status area at the right hand end of the Command Line Toolbar:

![Current Page Displayed in Status Area]

Tip

You can control which page loads next when you use Next Page to change pages by having the pages in the desired order in the Page Directory. See Copying and Moving Pages (p.308).

26.2.1 Options When Changing Page

When you change page, there are three options for what happens to any cuelists, scenes or inhibitive masters that are still active:

- **Release All**: releases all cuelists, scenes and inhibitive masters on the old page and replaces them with the cuelists on the new page.
- **Hold Over If Active**: keeps active cuelists, scenes and inhibitive masters from the old page on their master, until you release them. They are then replaced with the contents on that master on the new page.
- **Leave In Background**: leaves the old cuelist, scene and/or inhibitive master active in the background, and attaches the new one to the master. To get to the background item, go back to the page that it is on.
Tip
You can think of changing pages using the Leave In Background option
as being similar to having one very long page, and moving the masters
to ‘look’ at different sections of it.

A further option, Remember Fader Values, allows a page's fader levels to remain where they
were last time the page was loaded. If the physical faders have moved from these values, a blue
matching bar will appear; see Matching Levels When Changing Page (p.305).

By default, Release All and Remember Fader Values are selected for new pages, but you can
change this in the User Preferences window:

- Setup → Preferences → Misc : see Figure 26.1, “The Misc pane of the User
Preferences window”.

![User Preferences window](image)

Figure 26.1. The Misc pane of the User Preferences window

If you want to hold over a particular cuelist, scene or inhibitive master when changing page, hold
the master's Choose key when changing the page. The item's name in the Playback Bar will
have a blue background to indicate it is in holdover mode.

To remove a held over master simply release it and the cuelist, scene or inhibitive master for
that master on the new page will replace it (if there is one).

26.2.2 Matching Levels When Changing Page

When you change page using Leave In Background, it is possible for the actual position of the
physical master faders to be different to the master level of the cuelist. For example, this will
happen if you have the fader at 100% while on Page 1, then go to Page 2 and reduce the master
to 50%, and then go back to Page 1; see Figure 26.2, “Matching Levels when Changing Page”.
Figure 26.2. Matching Levels when Changing Page

If this happens, the master level of the cuelist will be shown on the Playback Bar in blue, together with a red dot showing the physical fader position. To rematch the levels, move the fader until it is at the same level as the blue bar; at this point the fader will take control of the cuelist master level in the normal way.

26.2.3 Restoring Activity When Changing Pages

You can trigger cues to go and assign masters to specific fader levels when changing page by using Restore Activity. To do this, you capture the desired activities as a macro, which is later executed when the page is loaded.

To capture page activity:

1. **Page + Open**: open the Page Directory.
2. Go to the desired page, and assign the page activity: you can playback cuelists and scenes, and set fader levels. For example, Master 1 Go, Master 4 at 50%, Master 8 at 25%.
3. Select **Capture Activity** from the Page Directory to store the activity as a macro for the page.

To directly edit a page's macro:

1. **Page + Open**: open the Page Directory.
2. Select to change to the spreadsheet view.
3. Select the Macro cell and press the Set key. Type in the macro you require, and press Enter.

For details of the macro syntax, see *Automating the Console Using Macros* (p.335).
Tip
You can display a list of available macro commands on the console by selecting the Macro cell and pressing the Set key.

To clear the macro:

1. **Page + Open**: open the Page Directory.
2. Deselect to change to the button view.
3. Right click on the page and select Clear Activity Macros from the contextual menu.

Similarly, you can enable or disable Restore Activity without deleting the macro itself by right clicking on the page and selecting from the contextual menu. A icon will appear as a reminder that Restore Activity is on.

26.3 Modifying Pages

You can copy or move cuelists, scenes and inhibitive masters to a page, or remove them, as well as clearing the whole page. If you change which cuelists, scenes or inhibitive masters are assigned to the current page, then that assignment will automatically be recorded as part of the page. Changes made to cuelists, scenes and inhibitive masters (such as editing their contents) remain with that item, and not with the page.

26.3.1 Copying Cuelists, Scenes and Inhibitive Masters to a Page

Copying a cuelist to a page creates a new cuelist which is independent of the one it is a copy of. Any changes made to this new cuelist will not effect the original cuelist. To copy an existing cuelist to a page:

- **List 2 Copy Choose**: copies cuelist 2 to the selected master.

You can also copy a cuelist from one master to another:

1. **Choose**: press the Choose key of the master with the cuelist you want to copy.
2. **Copy**
3. **Choose**: press the Choose key of the master you want to copy the cuelist to.

You can copy scenes and inhibitive masters in the same way.
26.3.2 **Moving Cuelists, Scenes and Inhibitive Masters to a Page**

Moving a cuelist to a page does not create a new cuelist, so changes made to the cuelist will affect all other uses of that cuelist on other pages. To move an existing cuelist to a page:

- **List 2 Move Choose** : moves cuelist 2 to the selected master.

You can also move a cuelist from one master to another:

1. **Choose + Move** : press the Choose key of the master with the cuelist you want to move.
2. **Choose** : press the Choose key of the master you want to move the cuelist to.

You can move scenes and inhibitive masters in the same way.

26.3.3 **Removing Cuelists, Scenes and Inhibitive Masters from a Page**

To remove a cuelist, scene or inhibitive master from a page:

- **Delete + Choose**

Note that this will only remove the item from the master; the item will not itself be deleted from the show.

26.3.4 **Clearing Cuelists, Scenes and Inhibitive Masters from a Page**

To clear all cuelists, scenes and inhibitive masters from the current page:

Note that clearing the current page will remove items from the masters; the items themselves will not be deleted from the show.

Important

When you clear the current page, any cuelists, scenes and inhibitive masters that were previously loaded onto the physical masters will be released, and their contents will no longer be output from the console.

26.4 **Copying and Moving Pages**

You can copy and move pages:

2. Make sure that the Guard button is selected, otherwise pressing a directory button will activate the page, rather than just selecting it.

Similarly, using the command line:

Tip
The order of the pages in the directory determines which page you get when changing pages using the Next Page key. You can copy and move your pages so that they appear in the correct order for your show. You can then go through the performance using Next Page rather than selecting from the directory.

26.5 Deleting Pages

To delete a page:

1. Page 1 Delete
2. Click OK to confirm the delete.

You can delete a range of pages:

1. Page 1 Thru 4 Delete
2. Click OK to confirm the delete.

Note that you cannot delete the current page. Deleting a page does not delete cuelists or scenes from the show.

Tip
If you prefer not to be asked to confirm the delete action, select Don't Ask Me Again in the confirmation window. You can reenable the confirmation by going to Setup → Preferences → Programming and selecting Confirm before deleting directory items.

26.6 The Template Page

The template page specifies which cuelists will appear on specific masters for every page without physically having to load them onto the same masters on all pages. For example, you could have a primary cuelist containing the commonly used cues of the show, which you want available on
the same master, regardless of which page you are on. When you move this cuelist to a master on the Template page, it will then appear on the same master of all pages. If a normal page and a template page have a cuelist on the same master, the normal page's cuelist will override the template page's cuelist.

To make a page into the template page:

2. **Right-click on the page, and select Set As Template Page from the menu.**

To turn off the template page, right-click on the template page and select Clear Template Page from the menu. There can only be one template page; assigning a new template page will restore the previous one to a normal page. The template page is shown by a symbol in the directory window.

Since the template page typically does not relate to a specific portion of your production (a song for example), template pages are never loaded from the Next Page key. When cycling through pages with this key, the template page will be skipped. You can always directly load the template page using either the page directory or the command line.

Cuelists, scenes and inhibitive masters that appear on a master of a page because they originate from the template page are shown in blue on the Playback Bar by default; see Figure 26.3, “The Playback Bar with Master 10 loaded from the Template Page”. You can turn this off in Setup → Preferences → Misc by deselecting Highlight Template.

![Figure 26.3. The Playback Bar with Master 10 loaded from the Template Page](image)

If the template page is the current page, the entire Playback Bar, including empty masters, are also shown in blue; see Figure 26.4, “The Playback Bar with the Template Page loaded”.

![Figure 26.4. The Playback Bar with the Template Page loaded](image)
Section 27: Working with Playback Controls

27.1 Grand Master

The Grand Master inhibits the intensities of all fixtures on the console, including those within the Programmer, with the exception of those that are parked. By default, it resides on Master 1 on each page of masters, but you can load a cuelist, scene or inhibitive master onto Master 1 in the same way as with any master; see Working with Pages (p.303).

The Flash key below the Grand Master fader acts as a non-latching blackout key. Pressing it will temporarily reduce all fixture intensities in the output to 0%, with the exception of any intensity parameters that have been parked; see Parking (p.207). When you release the key, fixture intensities are restored to their normal values.

You can also control the Grand Master using the GM key. Hold down the GM key and turn the first parameter wheel or the I-Wheel. This allows you to access the Grand Master quickly when a normal master on the current page is obscuring it. The GM key LED shows the state of the Grand Master:

- **Off**: Grand Master is at 100%.
- **On**: Grand Master is at 0%.
- **Slow flashing**: Grand Master is between 0 and 100%.

27.1.1 Matching the Grand Master Level

If you use the GM key to change the Grand Master level, it is possible for the position of the physical fader to be different to the Grand Master level. If this happens, the Grand Master level will be shown on the Playback Bar in blue, with a red dot showing the level of the physical fader. To rematch the levels, move the fader until it is at the same level as the blue bar; at this point the fader will take control of the Grand Master level in the normal way.

For an explanation of matching fader levels, see Matching Levels When Changing Page (p.305).

27.1.2 The Blackout Key

The Flash Key below the Grand Master acts as a blackout button. You can disable this function:

1. Setup → Preferences → Misc
2. Under Grand Master Options, deselect DBO on Flash.
27.2 Inhibitive Masters

Inhibitive masters allow you to limit the intensity of a group of fixtures. If the inhibitive master is at full, then the fixtures that it controls will be at the level determined by the playbacks, Programmer, and so on. As the inhibitive master level is reduced, the fixture intensities will be reduced in proportion. For example, if you have four fixtures at 0%, 50%, 80% and 100% in a cue that is being output, and these fixtures are also in an inhibitive master, then the levels will change as follows:

<table>
<thead>
<tr>
<th>Fixture:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master at 100%</td>
<td>0</td>
<td>50</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Master at 50%</td>
<td>0</td>
<td>25</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Master at 0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Pressing the Flash key of an inhibitive master is the same as momentarily changing its fader level to 0%, taking all fixture intensities controlled by the inhibitive master to 0%. Intensity values are restored when you release the key.

To create an inhibitive master:

1. Record a group containing the required fixtures. See Recording a Group (p.181).
3. Select the required group. To ensure you don't select the group in the Programmer or editor, enable the Guard button in the Group Directory, or press and hold the Pig key while selecting the group.
4. Move, Choose: move the group to the required master.

Or, using the command line:

1. Record a group containing the required fixtures.
2. Group [group number] Move Choose

The Playback Bar will show the group name above the chosen master. When the master level is less than 100%, the Playback Bar will also display a bar showing the level. When the Flash key is pressed, the Playback Bar will display BO; see Figure 27.1, “The display of Inhibitive Masters on the Playback Bar”.

Reference

Section 27: Working with Playback Controls

Flying Pig Systems
27.3 Configuring Playback Controls

For each cuelist and scene you can configure how the playback controls work. For example you can:

- Assign the master Go key to assert the selected cuelist over 3 seconds.
- Assign the main Halt/Back key to Halt the selected cuelist with the option to ‘Release if already halted’.
- Assign the Fader to be a manual crossfader rather than an intensity fader.
- Assign the Flash key to only flash to 50% and to Go the cuelist.

To assign the function of each control, together with any associated options:

1. Open + Choose : open the Cuelist window.
2. Options : open the Options for the cuelist.
3. Under Controls, select the Master or Main Controls pane; see Figure 27.2, “The Master pane of the Cuelist Options window” and Figure 27.3, “The Main Controls pane of the Cuelist Options window”.
4. Select the action you want controls to have from the corresponding drop-down list, together with any options.
5. Press OK when you have finished.
Figure 27.2. The Master pane of the Cuelist Options window

Figure 27.3. The Main Controls pane of the Cuelist Options window
27.3.1 Configuring Master Controls

When you configure master controls, these settings are part of the cuelist and will be applied to the master that the cuelist is on. The configuration options for the master controls are shown in the following tables:

The Master Go and Master Halt keys

<table>
<thead>
<tr>
<th>Function</th>
<th>Options and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Disables the control</td>
</tr>
<tr>
<td>Assert</td>
<td>Asserts the master. Deselect Use default cuelist time to enter your own assert time for the master, overriding the cuelist's assert time.</td>
</tr>
<tr>
<td>Release</td>
<td>Releases the master. Deselect Use default cuelist time to enter your own release time for the master, overriding the cuelist's release time.</td>
</tr>
<tr>
<td>Go</td>
<td>Go's the master. Deselect Use default cuelist time to enter your own fade time for the master, overriding the cuelist's time.</td>
</tr>
<tr>
<td>Halt</td>
<td>Halts the master, stopping any fades that are in progress. Select Use Fade Time to use the previous cue's fade time when going backwards instead of the cuelist's Back Time. Select Trigger Cuelist Macro to trigger the previous cue's macro when going backwards.</td>
</tr>
<tr>
<td>Back</td>
<td>Reverses the currently running crossfade. Deselect Use default cuelist time to enter your own back time for the master, overriding the cuelist's back time.</td>
</tr>
<tr>
<td>Restart</td>
<td>Goes to the first cue in the cuelist.</td>
</tr>
<tr>
<td>Goto cmdline</td>
<td>Enters the Goto command into the command line, so that you can enter a cue number and press Enter to go to that cue.</td>
</tr>
<tr>
<td>Goto</td>
<td>Enter a cue number to go to in the Target Cue cell. Deselect Use default cuelist time to enter your own fade time, overriding the cue's time.</td>
</tr>
<tr>
<td>Skip forward</td>
<td>Go instantly to the next cue.</td>
</tr>
<tr>
<td>Skip back</td>
<td>Go instantly to the previous cue.</td>
</tr>
</tbody>
</table>

The Fader

<table>
<thead>
<tr>
<th>Function</th>
<th>Options and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Disables the control</td>
</tr>
<tr>
<td>I Fader</td>
<td>The fader controls fixture intensities being output by the master. Press Go Off Zero to Go the next cue when the fader is moved above zero. Press Release At Zero to release the master when the fader is moved down to zero.</td>
</tr>
<tr>
<td>Manual cross-fader</td>
<td>The fader control cues manually: move the fader to the bottom to ‘pick up’ the next cue, then move it up to start the crossfade.</td>
</tr>
</tbody>
</table>
The Flash key

<table>
<thead>
<tr>
<th>Function</th>
<th>Options and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Disables the control</td>
</tr>
<tr>
<td>Flash</td>
<td>The Flash key brings the fixture intensities currently controlled by the master to their full level, determined by the cuelist or scene on the master. This is equivalent to momentarily bringing the fader to full. You can enter a percentage level for the Flash function. If this is less than 100%, fixture intensities will be reduced in proportion when the Flash key is pressed. Press Go On Flash to go the master when the Flash key is pressed. Press Release on Off to release the master when the Flash key is released. Press Solo to have the intensity outputs of all other masters taken to zero when the Flash key is pressed. If you select Latching, the action of the Flash key is maintained until it is pressed a second time.</td>
</tr>
</tbody>
</table>

27.3.2 Configuring the Main Controls

When you configure the main playback controls, the settings are part of the cuelist and will be applied whenever you select the Choose key for the master that the cuelist is on. The configuration options for the main control keys are shown in the following table:
The Assert, Release, Goto, Skip Forwards, Skip Backwards, Main Halt and Main Go keys

<table>
<thead>
<tr>
<th>Function</th>
<th>Options and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Disables the control</td>
</tr>
<tr>
<td>Assert</td>
<td>Asserts the chosen master. Deselect Use default cue list time to enter your own assert time, overriding the cue list's assert time.</td>
</tr>
<tr>
<td>Release</td>
<td>Releases the chosen master. Deselect Use default cue list time to enter your own release time, overriding the cue list's release time.</td>
</tr>
<tr>
<td>Go</td>
<td>Go's the chosen master. Deselect Use default cue list time to enter your own fade time, overriding the cue list's time.</td>
</tr>
<tr>
<td>Halt</td>
<td>Halts the chosen master, stopping any fades that are in progress.</td>
</tr>
<tr>
<td>Back</td>
<td>Reverses the currently running crossfade on the chosen master. Deselect Use default cue list time to enter your own back time, overriding the cue list's back time.</td>
</tr>
<tr>
<td>Restart</td>
<td>Goes to the first cue in the cue list on the chosen master.</td>
</tr>
<tr>
<td>Goto cmdline</td>
<td>Enters the Goto command into the command line, so that you can enter a cue number and press Enter to go to that cue on the chosen master.</td>
</tr>
<tr>
<td>Goto</td>
<td>Enter a cue number to go to in the Target Cue cell. Deselect Use default cue list time to enter your own fade time, overriding the cue's time.</td>
</tr>
<tr>
<td>Skip forward</td>
<td>Go instantly to the next cue on the chosen master.</td>
</tr>
<tr>
<td>Skip back</td>
<td>Go instantly to the previous cue on the chosen master.</td>
</tr>
</tbody>
</table>
Section 28: Working with Audio, MIDI and Timecode

The Wholehog 3 console allows you to input and output audio signals, including playing audio from the built-in CD drive. Using any console in the Wholehog line, you can trigger cues from MIDI Notes, MIDI Show Control (MSC), and send MSC data out. You can also bring timecode into the console and trigger cues from it. Wholehog OS supports MIDI timecode, and Linear Timecode (LTC).

To use MIDI with a Road Hog Console or Hog 3PC, you will need an external USB MIDI interface device.

28.1 Working with Sound

The Wholehog 3 supports several sound inputs and outputs, all controlled from the Sound panel of the Control Panel; see Figure 28.1, “The Sound panel of the Control Panel”. To open the Control Panel:

- Setup → Control Panel

![Control Panel](image)

Figure 28.1. The Sound panel of the Control Panel

In the Sound panel you can set a volume level, pan between left and right, and mute each on the console’s inputs and outputs:

- **Wave**: console sounds such as beeps.
- **CD**: the built-in CD drive.
• **Line In:** the 3.5mm stereo mini-jack line input on the console's rear panel.
• **Line Out:** the 3.5mm stereo mini-jack line output on the console's rear panel.
• **Speakers:** the console's built-in speakers.

All inputs are sent to all outputs, subject to the levels assigned in the Control Panel.

28.1.1 Playing Sound from the CD-ROM Drive

You can control sound playback from the console's built in CD-ROM drive using the on-screen controls located on the CD Control Toolbar; see Figure 28.2, “The CD Control Toolbar”.

![Figure 28.2. The CD Control Toolbar](image)

To open the CD Control Toolbar:

• **Open + CD Tools:** the CD Tools button appears on the toolbar at the bottom of the right hand screen when you press the Open key.

The CD Control Toolbar displays track time information, and has controls for:

• Play
• Pause
• Stop
• Skip Backwards
• Skip Forwards
• A drop down list of tracks
• Playing/Paused: the current time on the track
• Remain: the time remaining on the track
• Track: the total time of the track
• A slider that represents the current location within the track. You can adjust the play or pause location by moving the slider.

You can use macros to control the CD-ROM drive when you launch a show, change page, or play a cue or scene; see Automating the Console Using Macros (p.335).

You can also use the CD-ROM drive as a source for timecode; see Using a CD (p.329).
28.2 Working With MIDI Show Control

You can use MIDI Show Control (MSC) to control any of the consoles within the Wholehog family. MIDI Show Control is a technology that allows you to control all the elements of a performance (lighting, sound, video, pyrotechnics, effects, and so on) from a single controller. It uses a variation of the well-established MIDI standard to send cuing information between the show controller and the controllers specific to each performance element. You can use the Wholehog console as the lighting controller in an MSC show control system, receiving commands from a show controller; you can also use the console as a show controller, sending MSC commands to other controllers.

For more information on MSC, see www.midi.org. In addition, John Huntington's definitive book *Control Systems for Live Entertainment* contains technical information, guidance on show control system design, and case studies of show control in use.

28.2.1 Bringing MSC into a Wholehog Console

To bring MSC into a Wholehog Console:

1. Connect an MSC controller to a MIDI input on the console or a USB MIDI input device connected to the console.
2. Setup → Network: open the Network window.
3. Select the console in the list.
4. Settings: open the Settings window; see Figure 28.3, “The MIDI pane of the Console Settings window”.
5. In the MIDI pane, check MSC In.
28.2.2 Sending MSC from a Wholehog Console

To send MSC from a Wholehog Console:

1. Connect an MSC device to a MIDI output on the console or a USB MIDI device connected to the console.
2. Setup → Network: open the Network window.
3. Select the console in the list.
4. Settings: open the Settings window.
5. In the MIDI pane, check MSC Out.

Tip
You can enable MSC out for individual cuelists using the cuelist's options; see Using MIDI Show Control (p.323).
28.2.3 Using MIDI Show Control

Wholehog OS recognises and sends the following MSC commands:

<table>
<thead>
<tr>
<th>Wholehog OS Command</th>
<th>MSC Command</th>
<th>MSC Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go</td>
<td>0x1 GO</td>
<td>cue number, cuelist number</td>
</tr>
<tr>
<td>Halt</td>
<td>0x2 STOP</td>
<td>cuelist number</td>
</tr>
<tr>
<td>Resume</td>
<td>0x3 RESUME</td>
<td>cuelist number</td>
</tr>
<tr>
<td>Skip Forward</td>
<td>0x4 TIMED_GO</td>
<td>time=0, cue number, cuelist number</td>
</tr>
<tr>
<td>Skip Back</td>
<td>0x4 TIMED_GO</td>
<td>time=0, cue number, cuelist number</td>
</tr>
<tr>
<td>Release</td>
<td>0xb GO_OFF</td>
<td>cuelist number</td>
</tr>
<tr>
<td>Change Page</td>
<td>0x1d OPEN_CUE_PATH</td>
<td>page number</td>
</tr>
</tbody>
</table>

MIDI show control is enabled by default for all cuelists and scenes. You can assign a cuelist or scene to ignore incoming MIDI Show Control commands:

1. Open + Choose → Options → Cuelist
2. Select Ignore MSC In.

Similarly you can prevent the MIDI Show Control commands for a cuelist being sent out from the console:

1. Open + Choose → Options → Cuelist
2. Select Suppress MSC Out.

Tip

MSC doesn't distinguish between cues and scenes as Wholehog OS does, so there are no MSC commands to control scenes. To work round this, you can send an MSC command with a CUE_PATH value of 5. Wholehog OS will treat the cue number as a scene number instead.

28.3 Working with MIDI Notes

You can use MIDI Notes to control a Wholehog console. MIDI Notes is the common language of the well-established MIDI standard. It can be used to trigger many of the console’s primary functions from a MIDI enabled device.

Console features such as Programming buttons, Playback buttons, Touch Screen Soft Keys, and Comment Macros can be assigned to eight different MIDI channels allowing a remote MIDI controller such as a MIDI keyboard to control fundamental console functions. Each feature type uses a specific MIDI map to associate notes with console functions.

For general information on MIDI Notes, see www.MIDI.org.
28.3.1 **Bringing MIDI Notes into a Wholehog Console**

To bring MIDI Notes into a Wholehog console:

1. Connect a MIDI device to a MIDI input on either the console or a USB MIDI input device connected to the console.
2. **Setup → Network:** open the Network window.
3. Select the console in the list.
4. **Settings:** open the Settings window.
5. In the MIDI pane, click on the MIDI Notes In checkbox button.

![Console Settings](image)

28.3.2 **Assigning MIDI Notes to Playback Bars**

To assign MIDI Note information to playback bars:

1. Connect a MIDI device to a MIDI input on either the console or a USB MIDI input device connected to the console.
2. **Setup → Network:** open the Network window.
3. Select the console in the list.
4. **Settings:** open the Settings window.
5. Select the MIDI Note Mapping in the Console Settings window.
6. In the desired MIDI Channel assignment field, select a Playback Bar to associate with the MIDI Channel.

Any incoming MIDI Note information for the specified MIDI channel will use the following mappings for the selected playback bar and its associated functions:

<table>
<thead>
<tr>
<th>Master #1 Note</th>
<th>Master #2 Note</th>
<th>Master #3 Note</th>
<th>Master #4 Note</th>
<th>Master #5 Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose 0</td>
<td>Choose 4</td>
<td>Choose 8</td>
<td>Choose 12</td>
<td>Choose 16</td>
</tr>
<tr>
<td>Go 1</td>
<td>Go 5</td>
<td>Go 9</td>
<td>Go 13</td>
<td>Go 17</td>
</tr>
<tr>
<td>Halt 2</td>
<td>Halt 6</td>
<td>Halt 10</td>
<td>Halt 14</td>
<td>Halt 18</td>
</tr>
<tr>
<td>Flash 3</td>
<td>Flash 7</td>
<td>Flash 11</td>
<td>Flash 15</td>
<td>Flash 19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Master #6 Note</th>
<th>Master #7 Note</th>
<th>Master #8 Note</th>
<th>Master #9 Note</th>
<th>Master #10 Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose 20</td>
<td>Choose 24</td>
<td>Choose 28</td>
<td>Choose 32</td>
<td>Choose 36</td>
</tr>
<tr>
<td>Go 21</td>
<td>Go 25</td>
<td>Go 29</td>
<td>Go 33</td>
<td>Go 37</td>
</tr>
<tr>
<td>Halt 22</td>
<td>Halt 26</td>
<td>Halt 30</td>
<td>Halt 34</td>
<td>Halt 38</td>
</tr>
<tr>
<td>Flash 23</td>
<td>Flash 27</td>
<td>Flash 31</td>
<td>Flash 35</td>
<td>Flash 39</td>
</tr>
</tbody>
</table>

The following MIDI note information for the specified MIDI channel will use the following mappings for the central playback functions:
28.3.3 Assigning MIDI Notes to Programming Keys

To assign MIDI Note information to programming keys:

1. Connect a MIDI device to a MIDI input on either the console or a USB MIDI input device connected to the console.
2. **Setup → Network**: open the Network window.
3. Select the console in the list.
4. **Settings**: open the Settings window
5. Select the MIDI Note Mapping pane of the Console Settings window.
6. In the desired MIDI Channel assignment field, select a Programming Keys to associate with the MIDI Channel.

Any incoming MIDI Note information for the specified MIDI channel will use the following mappings for the associated Programming Keys:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Note</th>
<th>Channel</th>
<th>Note</th>
<th>Channel</th>
<th>Note</th>
<th>Channel</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num 0</td>
<td>0</td>
<td>Plus</td>
<td>13</td>
<td>Setup</td>
<td>26</td>
<td>Colour</td>
<td>39</td>
</tr>
<tr>
<td>Num 1</td>
<td>1</td>
<td>Thru</td>
<td>14</td>
<td>Control</td>
<td>27</td>
<td>Beam</td>
<td>40</td>
</tr>
<tr>
<td>Num 2</td>
<td>2</td>
<td>Full</td>
<td>15</td>
<td>Open</td>
<td>28</td>
<td>Effects</td>
<td>41</td>
</tr>
<tr>
<td>Num 3</td>
<td>3</td>
<td>At</td>
<td>16</td>
<td>Update</td>
<td>29</td>
<td>Time</td>
<td>42</td>
</tr>
<tr>
<td>Num 4</td>
<td>4</td>
<td>Backspace</td>
<td>17</td>
<td>Merge</td>
<td>30</td>
<td>Live</td>
<td>43</td>
</tr>
<tr>
<td>Num 5</td>
<td>5</td>
<td>Enter</td>
<td>18</td>
<td>Record</td>
<td>31</td>
<td>Scene</td>
<td>44</td>
</tr>
<tr>
<td>Num 6</td>
<td>6</td>
<td>Left</td>
<td>19</td>
<td>Copy</td>
<td>32</td>
<td>Cue</td>
<td>45</td>
</tr>
<tr>
<td>Num 7</td>
<td>7</td>
<td>Right</td>
<td>20</td>
<td>Move</td>
<td>33</td>
<td>List</td>
<td>46</td>
</tr>
<tr>
<td>Num 8</td>
<td>8</td>
<td>Up</td>
<td>21</td>
<td>Delete</td>
<td>34</td>
<td>Page</td>
<td>47</td>
</tr>
<tr>
<td>Num 9</td>
<td>9</td>
<td>Down</td>
<td>22</td>
<td>Fixture</td>
<td>35</td>
<td>Macro</td>
<td>48</td>
</tr>
<tr>
<td>Period</td>
<td>10</td>
<td>Pig</td>
<td>23</td>
<td>Group</td>
<td>36</td>
<td>Highlight</td>
<td>49</td>
</tr>
<tr>
<td>Slash</td>
<td>11</td>
<td>Fan</td>
<td>24</td>
<td>Intensity</td>
<td>37</td>
<td>Blind</td>
<td>50</td>
</tr>
<tr>
<td>Minus</td>
<td>12</td>
<td>Set</td>
<td>25</td>
<td>Position</td>
<td>38</td>
<td>Clear</td>
<td>51</td>
</tr>
</tbody>
</table>

- **Plus**: Setup
- **Thru**: Control
- **Full**: Open
- **At**: Update
- **Backspace**: Merge
- **Enter**: Record
- **Left**: Copy
- **Right**: Move
- **Up**: Delete
- **Down**: Fixture
- **Pig**: Group
- **Fan**: Intensity
- **Set**: Position
- **Plus**: Colour
- **Thru**: Beam
- **Full**: Effects
- **At**: Time
- **Backspace**: Live
- **Enter**: Scene
- **Left**: Cue
- **Right**: List
- **Up**: Page
- **Down**: Macro
- **Pig**: Highlight
- **Fan**: Blind
- **Set**: Clear
- **Plus**: Next
- **Thru**: Back
- **Full**: Mouse UL
- **At**: Mouse UR
- **Backspace**: Mouse LR
- **Enter**: I-Wheel UP
- **Left**: I-Wheel DN
- **Right**: Touch
- **Up**: Park
- **Down**: View
- **Pig**: Knockout
- **Fan**: 51
28.3.4 Assigning MIDI Notes to Monitor Soft Keys

To assign MIDI Note information to monitor soft keys:

1. Connect a MIDI device to a MIDI input on either the console or a USB MIDI input device connected to the console.
2. **Setup → Network**: open the Network window.
3. Select the console in the list.
4. **Settings**: open the Settings window
5. Select the MIDI Note Mapping pane of the Console Settings window.
6. In the desired MIDI Channel assignment field, select Soft Keys to associate with the MIDI Channel.

Any incoming MIDI Note information for the specified MIDI channel will use the following mappings for the associated Soft Keys:

Lower Right 1	0	Upper Right 1	12	Upper Left 1	24
Lower Right 2	1	Upper Right 2	13	Upper Left 2	25
Lower Right 3	2	Upper Right 3	14	Upper Left 3	26
Lower Right 4	3	Upper Right 4	15	Upper Left 4	27
Lower Right 5	4	Upper Right 5	16	Upper Left 5	28
Lower Right 6	5	Upper Right 6	17	Upper Left 6	29
Lower Right 7	6	Upper Right 7	18	Upper Left 7	30
Lower Right 8	7	Upper Right 8	19	Upper Left 8	31
Lower Right 9	8	Upper Right 9	20	Upper Left 9	32
Lower Right 10	9	Upper Right 10	21	Upper Left 10	33
Lower Right 11	10	Upper Right 11	22	Upper Left 11	34
Lower Right 12	11	Upper Right 12	23	Upper Left 12	35

28.3.5 Assigning MIDI Notes to Comment Macros

To assign MIDI Note information to comment macros:

1. **Setup → Network**: open the Network window.
2. Select the console in the list.
3. **Settings**: open the Settings window.
4. Select the MIDI Note Mapping tab/.
5. In the desired MIDI Channel assignment field, select Comment Macros to associate with the MIDI Channel.
6. Click on the Configure button to open the MIDI Note Mapping window.
7. Assign a comment macro in the macro field to a specific MIDI Note value.

28.4 Bringing Timecode into the Console

You can bring timecode into the console in several ways:

<table>
<thead>
<tr>
<th>Timecode Type</th>
<th>Input Using</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDI Timecode</td>
<td>The MIDI input on the console.</td>
</tr>
<tr>
<td>Linear Timecode</td>
<td>A Linear Timecode USB Widget connected to the console's USB port.</td>
</tr>
<tr>
<td></td>
<td>An audio CD in the console's CD-ROM drive.</td>
</tr>
</tbody>
</table>

Timecode brought into a console is automatically distributed over the network and can be used by any other console.

Tip

You can have multiple timecodes running over the network at once.

28.4.1 Connecting a Timecode Input

Connecting to a Console

To connect a timecode source to the console:

1. If you are using MIDI Timecode, connect the source to the console's MIDI In port on the rear panel or the MIDI In port of an USB MIDI device.
2. If you are using Linear Timecode, connect the timecode source to the console or USB LTC Widget input. This is a standard audio 3-pin XLR connection.
4. Select the console in the list.
5. Settings : open the Settings window.
6. In the Timecode pane, select the input and any required options; see Timecode Input Options (p.330).

Using a CD

Wholehog OS can use the elapsed time of an audio CD as a timecode source:

1. Place the audio CD in the console's CD-ROM drive.
2. Setup → Network : open the Network window.
3. Select the console in the list.
4. **Settings**: open the Settings window.

5. In the **Timecode** pane, select CD as the input and assign any required options; see *Timecode Input Options* (p.330).

The CD will send its elapsed time just like any other timecode source when it is played using the CD controls; see *Playing Sound from the CD-ROM Drive* (p.320). Note that the CD audio will come out the console speakers and audio output port, according to the settings in the Sound pane of the Control Panel; see *Working with Sound* (p.319).

28.4.2 Timecode Input Options

Note that CD Timecode only functions with early Wholehog 3 consoles.

You can assign various options for timecode input in the **Timecode** pane of the **Settings** window.

![Console Settings](image)

The general options for timecode input are:
28.5 Triggering Cues from Timecode

You can select a timecode source for each cuelist, and then give timecode values to cues within the list to determine when they should be triggered. To select a source:

1. **Open → Choose:** open the Cuelist window.
2. **Options → Cuelist:** go to the Cuelist pane of the Playback Options window.
3. Select a timecode source from the drop down list:

 ![Timecode Source](image)

4. Ensure that the Enable Timecode button is selected.

 Tip

 There is an Enable Timecode button in the Cuelist window, so you can easily enable and disable timecode during programming and playback without having to open the Playback Options window each time.

To trigger a cue from timecode:

1. **Open → Choose:** open the Cuelist window.
2. Select the Wait cell for the cue, and press Set.
3. From the toolbar, select Timecode.
4. Enter a timecode value in hours, minutes, seconds and frames, in the form `hh/mm/ss.ff,` then press Enter.

As well as entering timecode values manually, you can use Wholehog OS's learn timing function to quickly associate timecode values with cues; see *Learn Timing (p.239).*

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Port</td>
<td>None</td>
<td>The active timecode input for the console. These are: None, LTC, MIDI, CD (console only).</td>
</tr>
<tr>
<td>Regenerate Frames</td>
<td>30</td>
<td>If the timecode input stops, the console will regenerate the timecode for this number of frames. Use this to protect against brief interruptions to the timecode signal.</td>
</tr>
<tr>
<td>Regenerate Forever</td>
<td>Off</td>
<td>The timecode will be regenerated indefinitely.</td>
</tr>
</tbody>
</table>
By default, cuelists will follow the incoming timecode, even if the timecode skips forwards or backwards; generally, this is a useful behaviour as, for example, you might ‘rewind’ the timecode during rehearsals to repeat a part of the show, and the cuelist will automatically go to the correct cue. Sometimes you may want to prevent a cuelist going backwards if the timecode goes backwards. You can do this using Trigger Forwards Only:

1. Open + Choose → Options → Cuelist
2. Select Trigger Forwards Only.

28.5.1 Editing Timecode Values

To change the timecode value used to trigger a cue:

1. Open → Choose : open the Cuelist window.
2. Select the Wait cell for the cue, and press Set.
3. From the toolbar, select Timecode.
4. Enter a timecode value in hours, minutes, seconds and frames, in the form hh/mm/ss.ff, then press Enter.

You may need to change the timecode value for one cue, and then change the timecode values for subsequent cues by the same amount, to keep the same relative timings. For example, you might have a series of cues where each one is triggered by timecode one second after the previous one. If the timecode value triggering the first cue needs to be increased by 12 frames, you may want the values for all the subsequent cues to also be increased by 12 frames to maintain the 1 second separation. Wholehog OS allows you to do this easily:

1. Open → Choose : open the Cuelist window.
2. Click and drag to select the Wait cells for the range of cues you want to edit.
3. Press Set.
4. Edit the timecode value of the first cell then press Enter. All the selected timecode values will be adjusted by the same amount of time added or subtracted from the first value.

28.6 Viewing Timecode

You can view the timecode generated by any source in a Timecode Toolbar:

2. Select a network node, such as a console or a MIDI/Timecode Processor.
3. Press Timecode Toolbar. The Timecode Toolbar will open; see Figure 28.5, “The Timecode Toolbar”.

Reference
Section 28: Working with Audio, MIDI and Timecode
If you have a cuelist with a timecode source selected, you can also open the Timecode Toolbar with the View Timecode button in the Cuelist window.

The Timecode Toolbar displays the Input timecode value (that physically arriving at the node) and the Current value. The Current value is the same as the input value when a real input port is selected, or the simulated value when in simulation mode; see Simulating Timecode (p.333). The Current value is the one that is presented to the rest of the network.

Figure 28.5. The Timecode Toolbar

28.7 **Simulating Timecode**

You can temporarily simulate a timecode source, perhaps because the actual source is not available during programming. Timecode simulation is controlled from the Timecode Toolbar:

1. Open → Choose : open any Cuelist window.
2. Press View Timecode to open the Timecode Toolbar.
3. Press Simulate to show the timecode simulation controls.

To set up timecode simulation:

1. Configure → Timecode : open the Timecode pane of the Console Settings window.
 Or:
 Press the Configure button on the Timecode Toolbar.
2. Select a timecode format to simulate from the list: SMPTE 30, NTSC 30, EBU 25, Film 24.
3. If required, assign up to three Jump points. These are timecode values that you can jump straight to from buttons on the Timecode Toolbar.
4. Press Close to finish.

You can control timecode simulation from the Timecode Toolbar with the Go, Stop, and three Jump buttons.
Section 29: Automating the Console Using Macros

There are two types of macros you can use to automate tasks on the console. Comment Macros are placed in the macro field of cuelist and other objects to trigger activity on the console. Key-stroke Macros allow a sequence of screen and button presses to be recorded for later playback.

29.1 Comment Macro Commands

You can use comment macros to automate tasks on the console. Tasks that can be automated include:

- Going, Halting, Asserting, Releasing and Fading Masters.
- Going, Halting, Asserting and Releasing Cuelists.
- Going, Halting, Asserting and Releasing Scenes.

You can have a comment macro run at these times:

- When a show is launched; see Startup Macros (p.120).
- When a page is loaded; see Restoring Activity When Changing Pages (p.306).
- When a cue or scene plays; see Triggering Automatic Tasks When a Cue Runs (p.289).

Comment Macros are text commands that you type or place into a macro cell; the syntax used is the same in each case:
Controlling Masters

<table>
<thead>
<tr>
<th>Comment</th>
<th>Macro</th>
<th>Syntax</th>
<th>Example</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go Master</td>
<td>GM</td>
<td>[master]/[cue]</td>
<td>GM1/3</td>
<td>Use '*' for the current chosen master. If you omit the cue number, the next cue will Go.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GM2>7</td>
<td></td>
<td>Go next cue on a range of masters.</td>
</tr>
<tr>
<td>Halt Master</td>
<td>HM</td>
<td>[master or range]</td>
<td>HM1,3:HM2>7</td>
<td></td>
</tr>
<tr>
<td>Assert Master</td>
<td>AM</td>
<td>[master or range]</td>
<td>AM1:AM2>7</td>
<td></td>
</tr>
<tr>
<td>Release Master</td>
<td>RM</td>
<td>[master or range]</td>
<td>RM1:RM2>7</td>
<td></td>
</tr>
<tr>
<td>Release All</td>
<td>RA</td>
<td></td>
<td>RA</td>
<td>Equivalent to Pig + Release.</td>
</tr>
<tr>
<td>Release Others</td>
<td>RO</td>
<td></td>
<td>RO</td>
<td>Releases all masters except the one with the macro.</td>
</tr>
<tr>
<td>Fade Master</td>
<td>FM</td>
<td>[master]/[level]</td>
<td>FM2/50</td>
<td>Fades Master 2 to 50%.</td>
</tr>
<tr>
<td>Choose Master</td>
<td>CM</td>
<td>[master]</td>
<td>CM1</td>
<td></td>
</tr>
</tbody>
</table>

Controlling Cuelists

<table>
<thead>
<tr>
<th>Comment</th>
<th>Macro</th>
<th>Syntax</th>
<th>Example</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go Cuelist</td>
<td>GL</td>
<td>[list]/[cue]</td>
<td>GL1.5, GL2/5</td>
<td>If you omit the cue number, the next cue will Go.</td>
</tr>
<tr>
<td>Halt Cuelist</td>
<td>HL</td>
<td>[list]</td>
<td>HL1,6</td>
<td></td>
</tr>
<tr>
<td>Assert Cuelist</td>
<td>AL</td>
<td>[list]</td>
<td>AL10</td>
<td></td>
</tr>
<tr>
<td>Release Cuelist</td>
<td>RL</td>
<td>[list]</td>
<td>RL4,7,9</td>
<td></td>
</tr>
</tbody>
</table>

Controlling Scenes

<table>
<thead>
<tr>
<th>Comment</th>
<th>Macro</th>
<th>Syntax</th>
<th>Example</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go Scene</td>
<td>GS</td>
<td>[scene]</td>
<td>GS12</td>
<td></td>
</tr>
<tr>
<td>Halt Scene</td>
<td>HS</td>
<td>[scene]</td>
<td>HS4</td>
<td></td>
</tr>
<tr>
<td>Assert Scene</td>
<td>AS</td>
<td>[scene]</td>
<td>AS1</td>
<td></td>
</tr>
<tr>
<td>Release Scene</td>
<td>RS</td>
<td>[scene]</td>
<td>RS6,20</td>
<td></td>
</tr>
</tbody>
</table>

Controlling Pages and Views

<table>
<thead>
<tr>
<th>Comment</th>
<th>Macro</th>
<th>Syntax</th>
<th>Example</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Page</td>
<td>CP</td>
<td>[page]</td>
<td>CP3</td>
<td></td>
</tr>
<tr>
<td>Next Page</td>
<td>CP</td>
<td>+</td>
<td>CP+</td>
<td>Goes to the next page in the Page Directory, skipping the template page and blank pages.</td>
</tr>
<tr>
<td>Previous Page</td>
<td>CP</td>
<td>−</td>
<td>CP−</td>
<td>Goes to the previous page in the Page Directory, skipping the template page and blank pages.</td>
</tr>
<tr>
<td>Recall View</td>
<td>RV</td>
<td>[view]</td>
<td>RV2</td>
<td></td>
</tr>
</tbody>
</table>
Controlling the CD-ROM drive (not available on all platforms)

<table>
<thead>
<tr>
<th>Comment</th>
<th>Macro</th>
<th>Syntax</th>
<th>Example</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go CD</td>
<td>GCD</td>
<td>[track]</td>
<td>GCD3</td>
<td>Plays the console's build in CD player. You can specify a track number, otherwise the CD will unpause if paused, or play from the start of the CD.</td>
</tr>
<tr>
<td>Halt CD</td>
<td>HCD</td>
<td></td>
<td>HCD</td>
<td>Pauses the CD if playing, unpauses if paused, or starts the CD but pauses it immediately.</td>
</tr>
<tr>
<td>Release CD</td>
<td>RCD</td>
<td></td>
<td>RCD</td>
<td></td>
</tr>
<tr>
<td>Next CD Track</td>
<td>NCD</td>
<td></td>
<td>NCD</td>
<td></td>
</tr>
<tr>
<td>Previous CD</td>
<td>PCD</td>
<td></td>
<td>PCD</td>
<td></td>
</tr>
</tbody>
</table>

Controlling Timecode

<table>
<thead>
<tr>
<th>Comment</th>
<th>Macro</th>
<th>Syntax</th>
<th>Example</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Timecode</td>
<td>ET</td>
<td>[cuelist]</td>
<td>ET2</td>
<td>Enables timecode for the selected cuelist.</td>
</tr>
<tr>
<td>Disable Timecode</td>
<td>DT</td>
<td>[cuelist]</td>
<td>DT2</td>
<td></td>
</tr>
<tr>
<td>Open Timecode</td>
<td>OT</td>
<td></td>
<td>OT</td>
<td></td>
</tr>
</tbody>
</table>

Sending MIDI strings

<table>
<thead>
<tr>
<th>Comment</th>
<th>Macro</th>
<th>Syntax</th>
<th>Example</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDI String</td>
<td>MS</td>
<td>[node number]/[MIDI message]</td>
<td>MSh1/90473F</td>
<td>The node number is ‘h’ for a console, ‘i’ for a MIDI/Timecode Processor, and its net number. The MIDI message is in Hex.</td>
</tr>
</tbody>
</table>

Controlling Network Devices

<table>
<thead>
<tr>
<th>Comment</th>
<th>Macro</th>
<th>Syntax</th>
<th>Example</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset Node</td>
<td>RNH</td>
<td>[device type][net number]</td>
<td>RNH3</td>
<td>Resets the selected network device, such as a DMX Processor. For the device type, use the following letter codes: H for WholeHog, D for DMX Processor and I for MIDI/Timecode Processor.</td>
</tr>
</tbody>
</table>

Controlling Keystroke Macros

<table>
<thead>
<tr>
<th>Macro</th>
<th>Syntax</th>
<th>Example</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GK</td>
<td>GK [macro number]</td>
<td>GK2</td>
<td>Runs Macro 2</td>
</tr>
<tr>
<td>HK</td>
<td>HK [macro number]</td>
<td>HK2</td>
<td>Pauses Macro 2</td>
</tr>
<tr>
<td>RK</td>
<td>RK [macro number]</td>
<td>RK2</td>
<td>Stops Macro 2</td>
</tr>
</tbody>
</table>
29.1.1 **Entering Comment Macro Commands**

To enter a comment macro command into a macro cell:

1. Select the macro cell, and press **Set**.
2. Select a command from the drop down menu.
3. Enter the specific information for the macro, such as the master number.
4. Press **Enter** to finish or select another macro and repeat. If you add a further macro command, the ‘:’ will be entered automatically.

Alternatively:

1. Select the macro cell, and press **Set**.
2. Enter the macro command manually using the keyboard.
3. Press **Enter** to finish.

Note that if you enter an invalid command, then the cell will revert to being empty when you press **Enter**.

29.1.2 **Additional Comment Macro Syntax**

Within a comment macro command, you can specify multiple targets separated with commas:

- RS6, 20

or a range with a right angle-bracket:

- HM2>7

You can have multiple comment macros executed by one cue by separating them with colons:

- HM1, 3 : HM2>7

You can also send commands to a specified network device, using **H** (Hog) to refer to a console, **D** to refer to a DMX Processor, and **IOP** to refer to an MIDI/Timecode Processor. For example:

- GM1H2 : will Go master 1 on console number 2.
- RND3 : will reset DMX Processor number 3.
29.2 Keystroke Macros

Keystroke Macros are a series of keystrokes, screen events, and encoder movements that are recorded into an object similar to a cuelist. When the Keystroke Macro is executed, the recorded key presses and actions are regenerated. Keystroke Macros can be executed manually or triggered by Comment Macros.

29.2.1 Recording Keystroke Macros

Key presses, screen events, and encoder movements can be recorded interactively and are always recorded into Macros in the Macro directory. To begin recording key presses:

1. Record, Macro: the Macro Directory opens.
2. [Macro 2]: choose a location in the directory

Or, using the commend line, press:

• Record, Macro, 2, Enter

If you leave out the Macro location:

• Record, Macro, Enter

The Keystroke Macro will be recorded in the next available location. If the destination Macro already exists, a popup will offer options: Insert, Merge, Replace.

When the Keystroke Macro begins recording, the Macro key LED will flash red and the will display in the far right of the command line to signify that recording has commenced.

All subsequent button presses, screen events, and encoder movements will be recorded into the specified Keystroke Macro. The time interval between the previous and current button press will also be recorded. Only one macro can be recorded at a time; the console will not allow you to record another macro while one is being recorded.

29.2.2 Stopping the Recording of Keystroke Macros

To stop the recording of a Keystroke Macro:

• Pig + Macro key.

The Macro key LED will stop flashing and the will disappear from the command line to signify that the macro has stopped recording.

29.2.3 Naming a Keystroke Macro

You can give a Macro a name that will be displayed in the Macro Directory window:
1. **Open + Macro**: open the Macro Directory

2. Check that the **Guard** button is selected, so that you don't accidentally active a Macro when pressing its button in the directory.

3. Select the Macro.

4. **Set, `[Name]`, Enter**: type in the name

 Tip
 To name a Macro immediately after recording it, press the Set key to open a Quickname window. Enter the Macro name and press OK to select.

29.2.4 Understanding Keystroke Macro Playback

Every time a Keystroke Macro is recorded, it will automatically recall the state of the windows at the time of the recording. This assures that when a macro is run that the windows are set up in the correct places for touch screen presses. At the time of macro playback, the current onscreen windows will be replaced with that of the macro.

If the macro does not contain any specific touch screen presses, you can delete the Recall View step from the macro list. See *Comment Macro Commands* (p.335) for editing information.

 Tip
 While macros provide users with increased functionality, they can also cause severe problems if misused, even causing the console to lock up.

During macro playback, manual functions may become unavailable or interfere with the macro playback. For instance, if you enter information on the command line as the macro is doing the same, the resulting command line structure may become invalid.

Macros have no intelligence; avoid recoding sequences that access items that are likely to be moved or deleted. For example, consider the macro sequence where a cuelist is opened and some edit operations are then performed on this cuelist. The cuelist is then deleted from the cuelist directory, and the macro replayed. No cuelist window will open since the cuelist no longer exists, so all the subsequent edit operations will occur on whatever window was below it, possible altering the contents of unintended items.

When opening a window it will appear in the position in which it was last used. This means that unless the window is open when the macro is recorded, there is no guarantee that it will open in the right place with the macro is replayed. For example, consider recording a macro with a blank set of screens. The group window is opened and a couple of buttons are touched, then recording is stopped. Move the group window to the other touch screen and close it. When the macro is replayed, the group window will get opened on the other touch screen, but all the touch screen presses will still be on the original (blank) touch screen.

It is also possible to speed up a macro so that it runs faster than the console can keep up with. This problem tends to manifest itself as key presses being missed out when replaying the macro. Increasing the amount of time in the Wait column of the macro will solve this problem. The size
of the wait required varies depending upon the number of things the desk is trying to do at once, and the complexity of the task initiated by the preceding key presses.

Running a Keystroke Macro from the Macro Directory Window

You can run Keystroke Macros from the Macro Directory window:

1. Open + Macro

OR

- Macro, Macro

To run a Macro, make sure that the Guard button in the Macro Directory window is deselected. Then press a Macro button in the directory, and it will playback. During Macro playback, the Macro LED will illuminate green and 🎉 will appear to the right of the command line.

The Macro buttons in the directory are colored to show the Macro status:

- Red: the Macro is recording.
- Green: the Macro is running.

Running a Keystroke Macro from the Macro Window

1. Open + Macro: open the Macro Directory Window.
2. Check that the Guard button is depressed.
3. Open + [Macro 4]: open the required Macro.
4. Press the Play Controls button in the Macro window. The on-screen playback controls will appear:

The controls are, from left to right, the Go, Pause, and Stop buttons.

During Macro playback, the Macro LED will illuminate green and 🔄 will appear to the right of the command line. When a Macro is paused, the Macro key LED will flash green.

Running Keystroke Macros from the Command Line

To run a Keystroke Macro from the command line:

Macro 1, Enter: sends a start command to Macro 1.

During Macro playback, the Macro LED will illuminate green and 🔄 will appear to the right of the command line.

Tip

Keystroke Macros can also be triggered within cuelists or scenes by using a Comment Macro. See *Comment Macro Commands (p.335)* for more information.

29.2.5 Stopping Keystroke Macro Playback

To stop the playback of a running macro:

1. Macro + Release
2. Alternatively, Pig + Macro.

29.2.6 Editing Keystroke Macros

You can edit the contents of a Macro in an editor window. For example, to open Macro 1 for editing:

1. Open + Macro: opens the Macro Directory.
2. Open + [Macro 1]: opens the Macro editor for Macro 1.
3. Alternatively, using the command line: Open Macro 1

![Macro 1 Window](image)

Figure 29.1. The Macro Window

The Keystroke Macro window has six columns that define each step of the macro.

- **Wait:** The Wait time is the time between the triggering of the previous step and the next step to be triggered.
- **Name:** The name of the step.
- **Command:** Type of command used in this step.
- **Command Data:** The data that is applied to the selected command. The type of command selected will determine the type of available command data.
- **Duration:** The amount of time for the command data to be applied. This information is useful for encoder movements and flash key presses.
- **Comment:** A notes field.

Each of the above fields can be edited by selecting the appropriate cell and pressing Set. Command and Command Data fields will display available selections. See Figure 29.2, “Command Data Selection”
Deleting Keystroke Macro Steps

To delete a macro step:

1. Press and hold Delete whilst selecting the macro step to be deleted from the Macro window.
2. Release the Delete key. A dialog will appear asking you to confirm the delete.
3. Click OK.

29.2.7 Deleting Keystroke Macros

To delete a keystroke macro:

1. Macro 1 Delete: deletes Macro 1.
2. Click OK.

Or, from the macro directory:

1. Press and hold Delete whilst selecting the macro to be deleted from the Macro Directory window.
2. Click OK.
Tip
For advanced Macro control, you may wish to delete either of the first two default steps of a macro. The first step is a recall view and the second step clears the command line.

Tip
If you prefer not to be asked to confirm the delete action, select Don't Ask Me Again in the confirmation window. You can reenable the confirmation by going to Macro → Preferences → Programming and selecting Confirm before deleting directory items.

29.2.8 Copying and Moving Keystroke Macros
To make a copy of a macro in a new location:

1. Open + Macro: open the Macro Directory.
2. Check that the Guard button is depressed so you do not accidentally apply macros when trying to select them.
3. Select the macro that you want to copy by pressing its button in the directory.
4. Press and hold the Copy key.
5. Press the button of the location in the directory you want to copy the macro to.

Or, using the command line:

- Macro 2 Copy Macro 3 Enter: copies the contents of Macro 2 to Macro 3.

Similarly, to move a macro to a new location:

- Macro 2 Move Macro 3 Enter: moves the contents of Macro 2 to Macro 3 leaving 2 empty. If the destination macro already exists, you will be asked to choose an option: Insert, Merge or Replace.

Insert, Add Steps, and Replace
When recording or copying a macro, if the destination location already has a macro recorded in it, you will be prompted with record options of Insert, Add Steps, or Replace. If you are moving a macro, only the Insert option is available.

- Insert: creates a new destination for the macro. The new macro will be assigned a free location just before the one chosen, using a point number if necessary.
- Add Steps: adds the macro steps from the source macro into the destination macro. All new information is appended to the end of the current macro steps.
- Replace: overwrites the macro information in that destination.
Tip
If you know that you are about to record, copy or move a macro to an existing destination, you can pre-select Insert, Merge or Replace from the Record Options Toolbar. This appears after you press the Record, Copy or Move keys.
Section 30: The Hog 3PC Software

Hog 3PC is a software program that runs the Wholehog OS on Windows based computers. You can download the current version for no charge at www.flyingpig.com.

The software can be used as an offline editor, a backup server, or a stand alone controller through the use of USB DMX or DMX Processors.

30.1 Installation

30.1.1 System Requirements

To ensure successful operation of the Hog 3PC software on a personal computer, verify that your system meets the following minimum specifications:

- 1GHz CPU or faster
- Microsoft Windows XP®, Windows Vista®, or Windows 7.
- 256MB of RAM
- 200MB of free hard-disk space
- 1024×768 or higher-resolution monitor

For larger shows, using a more powerful processor is advisable. Please ensure that you are using the most up-to-date drivers for your graphics card.

30.1.2 Installing the Hog 3PC Application

To install the software:

1. Double click on the Hog3PC_x-x-x-x.msi file to launch the install wizard, where x-x-x-x is the supplied build number. The Hog 3PC installer will check your operating system and windows installer versions, and then display the welcome screen.
2. Ensure any Flying Pig Systems USB devices (such as widgets or wings) have been disconnected from your computer, and click on the Next button to continue.

3. The wizard displays an End User License Agreement. After you select I accept the terms in the License Agreement, you can click the Next button to continue.

4. You can now choose which features of Hog 3PC you wish to install. The listed options will vary depending on which components are already installed on your machine. Select your preferences and click on Next to continue.
5. By default the software will be installed into the ‘C:\Program Files\Flying Pig Systems\Hog3PC’ directory. You can use the Browse button to navigate to another location for the application.

6. After selecting a drive location and components to install, click on Next to continue installation.

7. The installer will now offer a link to the Elo TouchSystems website. If you plan to use Elo touchscreens with your Hog 3PC setup, then it is recommended you click on the Elo Drivers button, bookmark the website in your browser, and download and install the latest touchscreen drivers from the Elo TouchSystems website after you complete the Hog 3PC installation. Click on Next to continue the installation.

8. This prompts a Ready to Install screen with instructions on beginning or cancelling the installation. Click Install to begin installing.
9. When the installation has finished, a final screen confirms that the application has successfully installed. Click Finish. You will then be prompted to restart your computer.

![Image of installation confirmation screen]

Important

It is important that you restart your computer at this point to ensure proper device driver configuration.

A Hog 3PC group will be added to the Programs folder on your Start Menu, with icons to start the Hog 3PC application and view installed documentation. A shortcut to the Hog 3PC application will also appear on your desktop.

In addition to the Hog 3PC application, the Hog 3PC group contains the Hog 3PC Widget Upgrader and a link to the User Manual.
30.1.3 **Computer Configuration**

Hog 3PC requires Windows XP SP2 or greater to ensure proper networking functionality. Since the Wholehog 3 Operating System makes use of multiple processes communicating via TCP/IP sockets, some Windows computer configurations may prevent the Hog 3PC processes from communicating with each other.

Not meeting the system requirements of Windows XP SP2 or greater, lack of an enabled network connection or multiple active network connections, and/or firewall settings can all result in Hog 3PC communication failures. These communication failures typically cause the Splash Screen to repeatedly display ‘Scanning port 6600’ in its status window. If any of the above conditions prevent the use of Hog 3PC, check the following settings:

Network Adaptor

Check the configured network adapter in the Network pane of the Control Panel. Ensure that the correct network adapter is enabled; see *Configuring Console Network Adapters* (p.71).

Firewall

When running the Windows XP firewall or aftermarket firewall products, the firewall may block TCP/IP communications. Often, you can add exceptions for the individual Hog 3PC processes, or add exceptions for traffic that has a source IP address and destination IP address that are both pointing to the local machine. Refer to the documentation provided with your firewall for further details.

30.1.4 **Software Removal**

You can remove the Hog 3PC application from your computer using the Add/Remove Programs utility found in the Windows Control Panel:

1. In the Windows Start menu, select Control Panel, then double click on Add/Remove Programs.
2. Select ‘Hog 3PC’ in the list of installed programs, and click Change/Remove.
3. Select Remove, click Next and follow the on-screen instructions to complete the un-installation of Hog 3PC software.

30.1.5 **Unpacking Hardware Components**

If you ordered a USB DMX Widget or DMX Super Widget, you should have received:

- USB DMX widget or Super Widget (Super Widget requires power and a power supply is included)
- USB cable
- Hog 3PC software installation CD

If you ordered a USB Wing, you should have received:
• USB playback or programming wing
• Protective cover for the wing
• USB cable
• Power supply unit with IEC power cable
• LED desklight with protective pouch

If you ordered an LTC Widget, you should have received:

• USB LTC widget
• USB cable

30.1.6 Hardware Installation

Hardware installation should only be performed after the Hog 3PC software has been installed on your computer. Please observe the following important information before connecting your hardware:

USB DMX Widget

As high-power USB devices, DMX Widgets are incompatible with bus-powered USB hubs. If a widget is connected via a bus-powered USB hub, Windows will report that it does not have enough power available to run the widget. Always connect the widget either directly to your computer, or to a self-powered hub.

Tip

The Super Widget comes with its own power supply, so you can connect it to a bus-powered USB hub.

USB LTC Widget

The LTC Widget is a low-power USB device, and so can be used with both bus powered and self powered USB hubs.

USB Super Widget

The USB Super Widget is a self powered device and requires use of the included power supply. It can be used with both bus powered and self powered USB hubs.

USB Wings

The USB Programming and Playback Wings can be used either with or without the supplied external power supplies. If used without, the desklight and internal USB hub will not function, and LED dimming will be unavailable. All other functions will remain unaffected. The USB Expansion wing is self powered and requires external power.
When the internal hub is active (with an external power supply connected), it operates as a self powered hub. It is therefore possible to connect high-power USB devices to the internal hub, such as the USB DMX Widget, or another Wing.

USB Wings are high-power USB devices when used without an external power supply, and so should not be connected to bus powered USB hubs unless the external power supply is connected.

Use the supplied cables to connect any Flying Pig Systems USB devices to your computer. Windows should automatically detect and install the new hardware. This process may take a few seconds, but should not require any input from you. If this is the case, you may ignore the following section on troubleshooting.

30.1.7 Troubleshooting Hardware Installation

- If you see the following dialog, you may safely ignore the warning and click on Next or Finish to complete the installation.

![Found New Hardware Wizard](image)

- If Windows displays the full ‘new hardware’ wizard (not just the dialog above), it has not detected the FPS USB drivers. If this happens, disconnect the USB device, un-install the Hog 3PC software and re-run the installer, verifying that the ‘USB Device Drivers’ option is checked during the installation process. Then reconnect the USB device.
- If the new hardware wizard is still displayed, select ‘Search for a suitable driver for my device’. On the following screen, ensure ‘Specify a location’ is checked and click on the Next button. This will display a dialog requesting the location of the drivers. You should enter ‘C:\Windows\Inf’, where ‘C:\Windows’ is the
location where Windows is installed (usually as above, or ‘C:\Winnt’). Windows should now detect the drivers and complete the hardware installation.

30.2 Operation

30.2.1 Starting the Hog 3PC Application

To start the application, click on the Hog 3PC icon on your Windows Start Menu. The Splash Screen and the Start window will open. In the Start window, you can choose to Launch New Show, Launch Existing Show, or Connect to Show.
Launching a new show, launching an existing show or connecting to an already running show works the same way on Hog 3PC as on Wholehog consoles; see Launch New Show (p.119), Launch Existing Show (p.119), or Connect to Show (p.119) respectively.

30.2.2 Quitting the Hog 3PC Application

To quit the application:

1. Right click on the Hog 3PC front panel or any screen to display the right click menu, and Select Quit.

 Or:

 Setup → Quit : then Quit button is on the Main Toolbar.

2. In the dialog box, select Quit to exit from Hog 3PC, or Log Off to exit the current show and return to the Start window where you can select another show to load.
30.2.3 Working with Hog 3PC Show Files

Creating

By default, all Hog 3PC shows are stored in sub folders at the following location: C:\Documents and Settings\user_name\My Documents\Flying Pig Systems\Hog 3PC\Shows. You can, however, choose to store show files in any location on your computer when creating a new show file.

Important
Alterning or changing the hierarchy or data of any of the files within a Show file folder will corrupt the show file and may make it unusable.

Transferring

A Wholehog show file is actually a folder containing several subfolders and files. Within the Hog 3PC application, this show folder is displayed as a single Wholehog show file with a Wholehog icon:

When browsing the show folders outside of Hog 3PC, you will be able to access the subfolders and files that make up your show.

Important
Alterning or changing the hierarchy or data of any of the files within a Show file folder will corrupt the show file and may make it unusable.

Show folders can not be loaded directly into Wholehog consoles; backup files must be used. When transferring show files between systems do not copy show the folders using Windows.
applications. Instead, use the Wholehog OS backup utility and then transfer the backup file to a console or other Hog 3PC system via CD-ROM or external drives; see Backing Up (p.357) below.

Backing Up

To prevent problems when transferring a Wholehog show file from Hog 3PC to another Wholehog system, always create a backup of the show file using Wholehog OS backup procedure. This backup procedure creates a single compressed file that contains all the subfolders and files integral to your Wholehog show file.

To create a backup of your show file refer to Backing Up (p.124)

30.2.4 **Using the Hog 3PC Interface**

Hog 3PC Windows

When Hog 3PC opens the Start window will be displayed along with the splash screen. Once a show file is loaded or opened, the two Hog 3PC default screens will be displayed. You can resize and position these screens the same as any standard Windows operating system screens. To resize, simply place your mouse cursor around an edge or corner to display a resize icon. Click and drag to resize the window. To move, click and drag on the window's title bar (at the top of each window).

The Front Panel Interface

The front panel of Hog 3PC looks and behaves the same as a Wholehog 3 console. Click on buttons to simulate pressing keys on the console. You can also click and drag to alter the various encoders or faders. In addition, when you click and drag on the trackball, it will illuminate blue and your mouse will adjust the pan and tilt of the selected fixtures.

To hold down a single key and make another selection, simply press and hold Shift on your computer keyboard when you click the key. As long as you are holding shift, this key (and subsequent keys) will remain held down. You can then click on another key, button, cell, or encoder to access further functions.
Right Click Menu

When right clicking in most portions of the Hog 3PC application, the following options are displayed:

- **Workspaces**: opens a sub-selection allowing various portions of the front panel to be displayed.
- **Default Positions**: restores all Hog 3PC screens to their default location on the Windows desktop.
- **Lock Front Panel Position**: toggles the ability to move the Hog 3PC Front Panel on the Windows desktop.
- **Toggle Front Panel**: toggles the Front Panel on/off.
- **Show All**: restores all Hog 3PC screens to their previous size.
- **Minimize**: minimizes the current Hog 3PC screen.
- **Minimize All**: minimizes all Hog 3PC screens.
- **Maximize**: maximizes the current Hog 3PC screen and hides the title bar.
- **Quit**: displays the exit dialog for the Hog 3PC application.

Displaying Four Hog 3PC Windows

By default, only two Hog 3PC windows are shown. However, the Hog 3PC software supports the display of three or four windows if desired. To open these windows:

1. **Setup → Control Panel → Displays**: open the Displays pane of the Control Panel; see *Figure 30.1, “The Displays pane of the Control Panel”*.

2. Set the resolutions for External Monitor 1 and External Monitor 2 (which correspond to the two external displays on the Wholehog 3 console).

3. Select OK.

Note that the control panel settings are system specific, so the number of screens will be retained regardless of the show file that is launched.
30.3 **Configuration**

30.3.1 **USB DMX Widgets and Super Widgets**

The Hog 3PC software can support up to eight universes of DMX output via USB devices. You can connect any combination of USB DMX Super Widgets or USB DMX Widgets to total 8 DMX outputs. In addition, an unlimited number of DMX outputs is possible when using Wholehog DMX Processors.

When using external USB DMX Widgets or Super Widgets, instead of the Wholehog console's direct Ethernet connection to DMX Processors, the Hog 3PC software uses a 'virtual' DMX Processor 8000 when patching and DMX output is then accomplished via external USB DMX Widgets or Super Widgets. Each output of a USB Widget or Super Widget can be mapped to an output of the DMX Processor using the Settings tab of the DMX Processor 8000 in the Network window. External DMX Processors should be mapped starting at DMX Processor #2. See *Patching Fixtures (p.139)* for details on patching fixtures to DMX Processors for DMX output.

When you connect a USB DMX Widget or Super Widget to a USB port of the computer, the Wholehog OS will automatically configure it to the next available output of the virtual DMX Processor 8000. The Link indicator on the widget should be illuminated and it will blink every 2 seconds to indicate that it is functioning correctly.

To manually configure Widgets:

1. **Setup → Network**: open the Network window.
2. Select the DMX Processor 8000 in the list by clicking on its Network Number, and press the **Settings** button to open the DMX Processor Settings window.
See Figure 30.2, “The Widget Outputs pane of the DMX Processor Settings window”

3. Select the Widget Outputs pane.

4. The Hog 3PC application provides one port for each of the DMX outputs on the DMX Processor in the show file. To configure a widget to an output port of a DMX Processor, click on the box associated with the port and select the widget from the list of serial numbers that appears. Super Widget ports will appear with the serial number followed by an output number.

5. Click Apply or OK to confirm the selection. The widgets that have been connected should now have their Active, DMX OK and TX Mode indicators illuminated.

A single widget or single output of a Super Widget may only be connected to one port at any one time. If a widget that is already connected to one port is connected to a second port, it will automatically be disconnected from the first port.

Some widget serial numbers will appear with red text. This indicates that the USB DMX Widget is not compatible with Hog 3PC and must be upgraded; see Upgrading USB DMX Widgets (p.363).

Tip
You can identify which widget is connected to the port by selecting the Beacon button to the right of the port. The widget connected to that port will flash its indicator lights for a few seconds.
30.3.2 **USB Playback and Expansion Wings**

You can connect multiple USB Playback and Expansion Wings to the Hog 3PC computer. For information on configuring wings, see *Adding Playback Wings (p.93)*.

30.3.3 **USB Programmer Wing**

No configuration is required for a USB Programmer wing. Once connected, it should begin to mimic the programming functions of a Wholehog console.

30.3.4 **Virtual Faders**

You can define the default setting for a playback bar's faders when no associated hardware is connected in the Virtual Faders tab of the User Preferences window; see *Figure 30.3, “The Virtual Faders pane of the User Preferences window”*. This setting allows you to define the virtual faders as up or down, and is associated with the current show file. The setting does not alter the position of the Grand Master, which is always considered to be up until changed by the user.

When hardware is connected, these settings will be disabled and ignored.
30.3.5 **MIDI Configuration**

You can configure MIDI Input and Output devices for use with Hog 3PC in the MIDI tab of the Control Panel. First, install your Windows MIDI input/output device and associated Windows drivers following the manufacturer's instructions. Once the hardware is properly configured in Windows, it should become available in the drop down menus of the Control Panel:

![Figure 30.3. The Virtual Faders pane of the User Preferences window](image)

30.4 **Visualiser Support**

You can visualise Hog 3PC output using a supported visualiser (such as ESP Vision or WYSIWYG) running on the same computer. You will need the Wholehog Connectivity application installed; it is installed automatically with the Hog 3PC application unless it is deselected using the Custom Setup option. For installation and use of the Wholehog Connectivity Application, see *Visualiser Connectivity* (p.375).
Tip
When Hog 3PC software is interfaced directly to a visualiser running on the same computer, your computer may be less responsive than when running Hog 3PC software alone. This is normal, as both programs must share the computer's resources.

30.5 Upgrading USB DMX Widgets

Many USB DMX Widgets (single universe) are compatible only with Hog 2PC. These USB DMX widgets will need to be upgraded to be compatible with Hog 3PC. Please contact your High End Systems dealer for pricing and details. When purchasing, you need to provide your Widget serial number and Widget ID number. Once the upgrade is purchased, you will receive an Upgrade Kit for each USB DMX Widget. This kit contains labeling, hardware, software, and a unique authorization code compatible only with the specified widget serial number.

After receiving your upgrade kit, follow these steps to upgrade your USB DMX Widget:

1. Install Hog 3PC from the included CD-ROM.
2. Connect your USB DMX Widget(s) that match the serial numbers on the included authorization sheet.
3. In Windows, launch the Hog 3PC Widget Upgrader application from the Hog 3PC start menu.
4. After confirming that the widget(s) are properly connected and the Link LED is illuminated, press Next.
5. Select a Widget ID number to upgrade from the drop down menu. To confirm the selected widget, press the Beacon button to flash the LEDs on the widget.
If the drop down menu displays ‘No DMX Widgets found!', check your USB connections. Press Next to continue to the next step.

6. Enter the authorization code for the selected widget, and press Next. The authorization code will be delivered with the Hog 3PC Widget Upgrade Kit.

If the code is incorrect an error message will be displayed. Click OK to close the error and re-enter the proper authorization code. Codes are unique for each USB DMX Widget and will not function unless they match the expected serial number and Widget ID number.

7. The upgrade process will take a few seconds to complete.

8. Once complete, the widget will be fully upgraded. You can now select Start Over to upgrade another widget, or press Finish or Quit to exit the application. In the event of an error, a message will be displayed. Please contact High End Systems support for further assistance; see Reporting Problems (p.423).
Congratulations, widget 2347 has been successfully upgraded to work with Hog 3PC.
If you would like to upgrade another widget, click Start Over, otherwise, click Finish to exit.
Section 31: The Road Hog and Road Hog Full Boar Consoles

31.1 Differences Between Road Hog and Other Wholehog Consoles

The Road Hog operates with the Wholehog application, and show files are completely compatible with show files programmed on any Wholehog system, but not compatible with Wholehog 2 control systems.

Although the front panel of the Road Hog console is very similar to the Wholehog 3 console, its capabilities vary in some specific ways.

31.1.1 Patching

The Road Hog console’s four internal DMX outputs are pre-configured within the Wholehog application. Each of the four outputs is mapped to the first four DMX outputs of DP #1 within the Wholehog OS. The software utilizes one ‘virtual’ DMX Processor when patching to these four outputs. The Road Hog Full Boar also utilizes one ‘virtual’ DMX Processor to patch its twelve universes. See Patching Fixtures (p.139) for details on patching fixtures to the DMX Processor for DMX output.

31.1.2 Trackball Preferences

Any changes you make to the pointer mode for the trackball in the User Preferences window regarding the bottom two buttons will be ignored. They will always behave as left and right click options when in pointer mode. You can still modify these buttons when in ball mode.

31.1.3 Lights

Like the Wholehog 3, the Road Hog has desklights to illuminate the console’s front panel. It also has a worklight to illuminate your paperwork in front of the console, and blue side markers.

Desklights

You can adjust the brightness of the desklights by holding down the Setup key and adjusting the third parameter wheel. By default, the desk lights are on while the console is being used and turn off after a period of inactivity; the period is determined by the Desk and Worklight Off time in the Appearance pane of the User Preferences window. You can also use the fourth (right hand) parameter wheel to adjust the brightness of the LEDs in the keys on the front panel.
Worklight

The front white worklight of the Road Hog console provides illumination of paperwork and the table surface. You can adjust the brightness of the worklight by holding down the Setup key and adjusting the second parameter wheel. By default, the work light is on while the console is being used and turns off after a period of inactivity; the period is determined by the Desk and Worklight Off time in the Appearance pane of the User Preferences window. The worklight can also be quickly toggled on or off by pressing Pig + Setup. The blue side marker lights on the front of the console are always on when the console is powered on.

31.2 Starting the Console

To start the Road Hog console:

1. Connect the console to AC mains power, between 100 and 240v.
2. Check that the AC power switch on the back panel of the console is switched On.
3. Once the console boots, a startup animation will play. When the animation ends, the console displays the Start window.

Tip

Touching the screen anywhere or clicking on the mouse during the animation skips the animation and displays the Start window.

Note that turning on the AC power switch will boot up the console without having to press the power button ⊘. However if the console was shut down from the software and the AC power switch is already on, then locate the power switch marked ⊘ on the top of the console and press to power up the console.

31.3 MIDI and Linear Timecode

The Road Hog console only supports one input of timecode in SMPTE format via the the external USB SMPTE Widget. The Road Hog Full Boar includes a SMPTE input. Other timecode formats available within the Wholehog OS are not available on the Road Hog. See Working with Audio, MIDI and Timecode (p.319) for more information on using timecode.

The Road Hog Full Boar supports MIDI IN and OUT. You can observe MIDI IN and MIDI OUT activity on the top two LEDs on the console's back panel. The LEDs will flash to indicate each time a MIDI message is sent or received. MIDI functionality within the Road Hog Full Boar console is the same as in the Wholehog OS.
MIDI is not currently supported with the Road Hog console.

31.4 Restoring the Road Hog System Files

The Road Hog System Restore utility allows reinstallation of the software from a location on the internal hard drive, or from external USB drives.

31.4.1 System Restore from the Internal Drive

The Road Hog console includes a system restore routine that can restore the original software and XPe image on the console. A protected partition on the hard drive stores the files needed to create a clean restore of the Road Hog console software. Newer versions of software may be available at www.flyingpig.com.

To restore your system files from the hard drive, you’ll need:

- USB Keyboard.

To restore the system files:

1. Connect the USB keyboard to the console.
2. As the system boots up, press any key on the keyboard when the boot manager screen is displayed. Note that this screen is displayed only for 1 second during the boot process.
3. Select *Road Hog System Restore* from the boot manager screen and press *Enter* on the keyboard. Selecting *Road Hog Console* will boot the console normally.
4. A recovery screen will prompt you to select a Partial recovery or Exit. The partial recovery process will reinstall the XPe image and the Wholehog software without erasing your show files.
5. The console will immediately begin drive restoration. The process may take anywhere from 10-15 minutes, and will automatically reboot your console when finished. Do not touch any keys or attempt to interrupt the restore process. If the process is interrupted for any reason, simply reboot and return to Step 1 to ensure the Road Hog console is completely restored.

31.4.2 System Restore from a USB Drive

The Road Hog console system restore routine can restore the original software or upgrade the XPe image from external USB drives (Flash, CD, ZIP). Newer versions of software may be available at www.flyingpig.com.

To restore your system files from a USB drive, you’ll need:
- Road Hog System Restore image on a USB drive (flash, CD, or Zip drive). The image must be an ISO image properly extracted to a CD or bootable flash drive; see *Creating a Bootable USB Flash Drive* (p.370).

- USB Keyboard.

To restore the system files:

1. Connect the USB keyboard to the console.
2. Connect the USB drive containing the System restore image.
3. As the system boots up, press F8 on the keyboard to display the boot device selection screen.
4. Select the USB device that contains the system restore image from the list.
5. A recovery screen will prompt you to select a Full or Partial recovery. A full recovery will erase the show files on the hard drive and a partial will not.

Important

The Full recovery process will remove all data from the Road Hog hard drive, including show files. The Partial recovery process will reinstall the XPe image and the Wholehog software without erasing your show files.

6. The console will immediately begin drive restoration. The process may take anywhere from 10-15 minutes, and will automatically reboot your console when finished. Do not touch any keys or attempt to interrupt the restore process. If the process is interrupted for any reason, simply reboot and return to Step 1 to ensure the Road Hog console is completely restored.

7. Once the system is restored and rebooted, remove the System Restore USB drive and store in a safe place.

Restoring Touchscreen Configuration after a Full Restore

Following the completion of a full system restore process, you should calibrate the touchscreens:

1. **Setup → Control Panel → Displays** : open the Displays pane of the Control Panel.
2. Press the Calibrate Touch Screens button and follow the on-screen instructions.
3. **Setup → Quit → Shut Down**. Once shutdown, restart the console to confirm that the screens are calibrated.

31.4.3 Creating a Bootable USB Flash Drive

The Road Hog console's System Restore routine also contains a utility to create bootable USB flash drives with or without a restore image.
Important
This process will remove *all* files from the USB flash drive.

To create a bootable flash drive, you’ll need:

- Road Hog System flash drive or other bootable capable flash drive of greater than 500Mb capacity.
- A USB Keyboard.

To create the bootable flash drive:

1. Connect the USB keyboard to the console.
2. Make sure that the USB flash drive is *not* connected to the console.
3. As the system boots up, press any key on the keyboard when the boot manager screen is displayed. Note that this screen is displayed only for 1 second during the boot process.
4. Select *Road Hog System Restore* from the boot manager screen and press Enter on the keyboard. Selecting *Road Hog Console* will boot the console normally.
5. The recovery screen will be displayed; at the bottom of the screen select *Make Bootable Flash Drive*.
6. Insert the USB drive and select it from the drop down list to make it bootable.
7. To place the current XPe image from this Road Hog console on the flash drive, select *Add Restore Files to the Flash Drive*.
8. Press Select to create the USB bootable flash drive image. This process will remove *all* files from the USB flash drive.
9. When complete, select Exit from the restore screen to boot the console.
10. Once the USB flash drive is made bootable, you can use a computer to extract an ISO image from *www.flyingpig.com* containing the latest Road Hog image.
Part A. Appendices
Section 32: Visualiser Connectivity

The Wholehog 3, Hog IPC and Hog 3PC consoles are capable of connecting to visualisers directly connected to the Wholehog network. Currently ESP Vision, WYSIWYG, MSD, Capture and Light Converse are supported. The Wholehog 3 Connectivity application must be installed on the visualization computer for this connectivity to function.

This section describes the basic information needed to install the Wholehog 3 Connectivity application on your visualiser computer as well as the configuration of the application. For in depth visualiser usage, please contact the visualiser manufacturer; see Visualiser Support Contacts (p.387).

32.1 Installing the Connectivity Application

You can download the current Wholehog 3 Connectivity installation application from the Flying Pig Systems website: www.flyingpig.com or or you can select to install the connectivity driver when installing Hog 3PC. The following instructions assume you are running the separate connectivity driver installation.

To install the connectivity application:

1. Double click the HogConnect_x-x-x-x.msi file to launch the install wizard.
2. The Hog Connect installer will check your operating system and windows installer versions, and then display the welcome screen. Press Next to begin the installation process.
3. The wizard displays an End User License Agreement.
After you select *I accept the terms in the License Agreement*, press *Next* to continue.

4. The installer now shows you which features of the Hog Connect application are going to be installed and into which location. Do not make any changes to the install location as most 3rd party visualizer applications are hard coded to point to the default installation directory and changing this option could lead to failure of the connectivity driver to start properly. Press *Next* to continue.

5. This prompts a *Ready to Install* screen with instructions on beginning or canceling the installation. Press *Install* to begin installing.
6. Installation: during the installation a progress bar will be shown:
7. Completing the installation: when the installation is complete, press Finish to exit the installer.

32.2 Connecting to ESP Vision, MSD, Capture and Light Converse

The Wholehog visualiser connectivity supports multiple DMX Processors dependent upon the number of universes supported by your visualiser and/or license. Contact the visualiser manufacturer for upgrade information.

32.2.1 Configuring Visualisers

Refer to your visualiser documentation for information regarding configuration of DMX input via the Wholehog visualiser connectivity application. Most visualisers require selecting the input source and it must be mapped to the Wholehog connectivity.

32.2.2 Configuring the Network Connection

As the visualiser application opens, the Wholehog DP window will be opened on the bottom right of your visualiser computer screen:
A Wholehog logo will also be placed in the Windows task bar when this application is running:

If you close the dialog box, the Wholehog DP will continue to run, and double-clicking on the task bar icon will re-open the dialog box.

When a Wholehog server is detected on the network the Status field will change to Wholehog Network Found, then to Loading Show, and finally to Running:

The Session and Info fields will contain additional network information.

The Wholehog DP application can be configured similarly to an actual DMX Processor. You can assign Wholehog network port and the net number for this application. The Port field must be assigned to the same port as your Wholehog console on the network. The Number field represents the net number and is similar to the number in the upper right hand corner on a DMX Processor.

Assign the number to a unique device net number that is not used by any other devices on the Wholehog network. Press Apply after making changes.
32.2.3 Configuring the Visualiser Universes

In the Wholehog DP window on your visualiser computer press the Patch button to open the Patch window. Using this window you can connect any of the 24 DMX universes within your visualiser to any DMX Processor and universe from your Wholehog show. For example, to assign visualiser universe 3 to respond to the DMX from universe 3 of DMX Processor 2, simply select DP# 2, Universe 3 in the #3 row. Press OK after completing the patching.

32.2.4 Using the Connectivity with ESP Vision, MSD, Capture or Light Converse

Once the above configuration is complete, the connectivity between the Wholehog system and the visualiser should begin working. You can close the Wholehog DP window and the connectivity will continue as long as the Wholehog logo remains in the task bar:

32.3 Connecting to WYSIWYG

The Wholehog Connectivity for WYSIWYG supports multiple DP’s up to the number of channels supported by your WYSIWYG dongle. Contact Cast for WYSIWYG upgrade information.

32.3.1 Configuring the Network Connection

When WYSIWYG is launched, the Wholehog DP window will be launched and opened on the bottom right of your visualiser computer screen:
A Wholehog logo will also be placed in the Windows task bar when this application is running:

If you close the dialog box, the Wholehog DP will continue to run, and double-clicking on the task bar icon will re-open the dialog box.

When a Wholehog server is detected on the network the Status field will change to Wholehog Network Found, then to Loading Show, and finally to Running:

The Session and Info fields will contain additional network information.

The Wholehog DP application can be configured similarly to an actual DMX Processor. You can assign Wholehog network port and the net number for this application. The Port field must be assigned to the same port as your Wholehog console on the network. The User Number field represents the net number and is similar to the number in the upper right hand corner on a DMX Processor.
Assign the User Number to a unique device net number that is not used by any other devices on the Wholehog network.

32.3.2 Configuring WYSIWYG

To configure WYSIWYG:

1. In WYSIWYG open the Device Manager: Live → Device Manager

2. Click on New to add an additional device. Select Wholehog III DP as the new device:

3. The device window will now display the Wholehog DMX Processor 8000.
Double click on this device or select it and press Properties. The Properties window will open:

4. In the Address field enter the DP number used when patching on the Wholehog console. Click OK to close this window.

5. Bind the ports to the universes in your WYSIWYG show; consult the WYSIWYG documentation for detailed instructions.
6. Once the universes are bound, you can connect to the Wholehog DP. Repeat the above steps for each DMX Processor used in your Wholehog show file.

32.3.3 Additional Steps for WYSIWYG Console Edition

When using some versions of Console Edition (CE) WYSIWYG to connect directly to a Wholehog system only one universe of visualization is possible at a time. If your version of CE is limited to one universe, you will need to specify which universe is active within the WYSIWYG file:

1. With the WYSIWYG file open, go to the Live Module and select Edit → Universes.
2. The Visualisation Universe Selection window will open. This window will display all the currently configured universes within your drawing. Use this window to select the universe you wish to visualize from the console.
32.3.4 Using the Connectivity with WYSIWYG

Once the above configuration is complete, the connectivity between the Wholehog system and WYSIWYG should begin working. You can close the Wholehog DP window and the connectivity will continue as long as the Wholehog logo remains in the task bar:

Autofocus Feature

WYSIWYG can send information back to your Wholehog console to allow lights to be automatically positioned to a particular location on stage, rather than individually positioning the fixtures using the console’s controls. Refer to the WYSIWYG Users Manual for further details on the Autofocus feature.

When WYSIWYG Autofocus is enabled, selecting and deselecting fixtures in WYSIWYG will do the same on your console. You can also use the functions in WYSIWYG to assign the intensity, iris, pan, tilt, and CMY colour mixing values in the active editor or programmer on the Wholehog console.

Note that the Autofocus feature requires that the Wholehog show file uses a fixture library version 2.5 or greater.

32.4 Troubleshooting

1. When launching a visualiser a message saying Error loading <path>/lxhog3dp.dll or hog3.dll appears.

 The driver can not be located. Run the installer again.

2. Windows 98 or ME will not run the msi installer.

 Download and install the Windows Installer 2.0 update from Microsoft and run the Wholehog Connectivity installer again.

3. The Wholehog DP window does not open when the visualiser is launched.

 Run the installer again.

4. The Wholehog DP window always says Locating Wholehog Network...

 Check the port matches on the settings on the console. Check Ethernet connections. Check that there is only one DHCP server in your network. Reboot the visualiser computer.

5. The Wholehog DP window displays Connection Error while trying to connect.

 Check the network settings on both the visualiser computer and the Wholehog console. Reboot the visualiser computer.

6. The Wholehog DP window displays Couldn’t get file handle while trying to connect.
Check that another visualiser is not running on the same computer. Reboot the visualiser computer.

7. **The Wholehog DP window displays **Loader version is old (need x.y.z) **while trying to connect.**

 You need to update the Connectivity Application. Check www.flyingpig.com for the latest version.

8. **No visible fixture output in the visualiser.**

 Check that the console Grand Master is up. Cycle the Blind key to assert the contents of the Programmer.

9. **WYSIWYG displays **Could not connect the following consoles: Wholehog DP.**

 Check that the Wholehog DP window indicates it is connected to the console and is running. Check that the address in the Properties window on WYSIWYG matches the DMX Processor in your Wholehog show, and that another device is not already connected to that number.

10. **WYSIWYG Autofocus does not appear to function.**

 Check that the Wholehog show is using a version 2.5 or greater fixture library. Check with Cast regarding the WYSIWYG fixture libraries.

32.5 Visualiser Support Contacts

ESP Vision: www.espvision.com

WYSIWYG/ Cast: www.castlighting.com

MSD: www.martin.com

Capture: www.capturesweden.com

Light Converse: www.lightconverse.net
Section 33: The Fixture Builder

The fixture builder enables users the ability to create their own fixture libraries from scratch, or from existing libraries within the console. The fixture builder should only be used in extreme cases when a new library is needed and there is no time to contact High End Systems support. Generally it is best that you contact support@flyingpig.com to request properly built fixture libraries.

The fixture builder utility is only recommended for advanced programmers with extensive lighting fixture and Wholehog Operating Software knowledge. Knowledge of the fixture DMX protocol is essential prior to creating a custom library. This guide roughly explains the use of the fixture builder, but in no way is intended to be a complete manual for creating custom libraries. Users are urged to contact support to have libraries properly built and installed into the software.

33.1 Working With the Fixture Builder

The fixture builder allows users to create from scratch basic fixture libraries. Use of the fixture builder requires in-depth knowledge of the fixture protocol as well as the standard library principles used in the Wholehog OS. The fixture builder utility does not allow full access to all abilities of libraries built by High End Systems, and therefore should only be utilized in extreme situations. Please note that custom libraries become part of the show file they were created in and can be merged between show files.

Libraries can be built from a blank canvass or can be copied from existing fixtures within the library (when using V4 libraries). When an existing library is copied, many of the unique elements of the factory created library are removed for compatibility with the fixture builder utility. The new fixture library may not behave exactly like the library it is a copy of.

33.1.1 Adding User Created Libraries to a Show

Once libraries have been built within the fixture builder, they are stored within the show file. You can then add these fixtures to your show in the same method as existing fixtures within the selected library:

1. In the Fixture window, open the Fixture Schedule.
2. Scroll down to the User Created manufacturer and expand to view all custom made libraries:
3. Add, patch, and program custom libraries in the same manner as existing libraries.

Once a fixture is created, it behaves the same as built-in fixture libraries:

- You can merge custom libraries from one show to another using the Merge Show function.
- You can use the Edit Fixtures window to adjust default values and further customize user created libraries.
- You can replicate and replace to and from user created fixtures.
- You should send a show containing your custom made fixtures to support@flypig.com so they may be added to future built-in libraries.

33.1.2 Creating, Editing and Deleting Fixture Libraries

You can create, edit and delete fixture libraries in the Fixture Builder window:

- Setup → Patch → Fixture Builder: open the Fixture Builder window.

Select an option from the buttons at the top of the window:

The options are:
• **Create New**: creates a new fixture from scratch. See *Creating a New Fixture Library From Scratch* (p.391).

• **Copy From**: creates a new fixture based on an existing fixture within a fixture library. See *Creating a New Fixture Library Using an Existing Library* (p.392).

• **Delete Current**: deletes the user-created library selected in the drop down list.

• To edit any existing User Created libraries, select it from the drop down list:

![Fixture Builder Interface](image)

Creating a New Fixture Library From Scratch

When you press the Create New button, the Create New Custom Type window will open; see *Figure 33.1, “The Create New Custom Type window”*.

![Create New Custom Type Window](image)

Within this window you can define the Model Name, Author, and enter any Notes. You can also choose to create blank or create from existing from within this window. In the Channel Count cell, enter the total number of DMX channels used by the fixture. In the Add Patchpoint @ Channel cell, enter a DMX channel number to define a new patchpoint. A patchpoint is used to
create fixtures with dual DMX addressing capabilities (similar to a scroller dimmer fixture type). When the fixture is later patched in the patch window, you will be able to patch this fixture at two discrete DMX addresses as you have defined the starting point for each within this window (the 1st channel is automatically defined as the first patch point) Only 1 additional patch point is currently allowed. Select OK to submit the library information and begin the building process; see Building the Fixture (p.392).

Creating a New Fixture Library Using an Existing Library

When you press the Copy From button, the Create New Custom Type window will open; see Figure 33.2, “The Create New Custom Type window”.

![Create New Custom Type window](image)

Figure 33.2. The Create New Custom Type window

Within this window you can define the Model Name, Author, and enter any Notes. The currently loaded fixture library within the show will be displayed. Select a manufacture and fixture to copy the existing library to the fixture builder. Select OK to submit the library information and begin the building process; see Building the Fixture (p.392).

33.1.3 Building the Fixture

Once you have added a fixture library from blank or from a copy, you will see the DMX channels in the fixture builder:
Use the fixture’s DMX Protocol to edit the cells as needed to build the custom library. The various cells and their uses are:

Type Information

- **Model Name**: the name assigned to this library.
- **Author**: the author of the library.
- **Date Modified**: the date of the last modification to this library.
- **Notes**: any notes entered by the author.
- **DMX Footprint**: total number of DMX channels used by this fixture.
- **Patchpoints**: total number of unique patch points and their location for this fixture.
- **Edit**: press this button to edit the information about this library.

Channel

This cell represents the DMX Channel number per the fixture’s protocol. Several entries for a single DMX channel may exist, each defined with different functions or features. Typically each DMX value or range defined by a fixture’s DMX protocol will result in an additional DMX entry for the same DMX channel. Use the New DMX Entry button to add additional blank rows for the currently selected DMX channel, and the Delete DMX Entry button to remove unwanted rows.

16-bit DMX functionality can be defined by combining two DMX channels with the same function and feature. Select a DMX channel cell, press Set and type in the two DMX channels to be combined (separated by / from the console keypad). For example to combine DMX channels 3 and 4 to create 16-bit DMX functionality, enter 3/4 in the Channel cell for channels 3 and 4. Combined channels do not need to be sequential (for example, 3/8 is valid).
Function

This cell represents the function or parameter used to access this channel. A function is defined as the parameter name displayed when programming the fixture. Examples of functions include: intensity, pan, tilt, gobo, cyan, etc. Functions are selected from a dialog box that is sorted by the following Kind categories: Unused, Intensity, Position, Colour, Beam, and Control. Most functions also have a sub-category called feature.

Feature

A feature is defined as a sub-classification of a function. For example, a gobo function can have slots, spins, and random features. All features within a function are mutually exclusive. In other words, each feature is a unique behaviour of the function and no two features can occur at the same time. Each feature can have its own DMX value or range of values. The function type defined in the function cell will determine what features are available in the feature cell. For instance, selecting a Strobe function will result in a choice of 13 features including: shutter, rate, ramp, ramp/snap, random, etc. Many functions have pre-defined features that cannot be changed (Intensity, Pan, Cyan, etc).

When building a fixture library, you define a feature as a sub-set of a particular function and associate it with a specific DMX value or range. A gobo function might have six slot features (one for each gobo), one spin feature, and one random feature. Each of these entries should be mapped to the corresponding DMX value(s) according to the fixture’s DMX protocol. A single DMX channel can have many different functions and features, each with their own unique DMX values or ranges of values.

DMX Value

This field is used to define the exact DMX value or range of values used by the function and feature of the DMX channel. Entries in this field can be a single DMX value or a range of values. Ranges can be entered with the Thru key on the console keypad. For example, 0>255 would result in a full range for an 8-bit DMX channel. DMX ranges can be inverted if desired, for example: 255>0 to match the real world range they correspond to. If a function is defined as a 16-bit DMX function, then DMX values and ranges may be between 0 and 65535.

If a DMX value is out of the allowable DMX range, the minimum or maximum value will automatically be used (an entry of 0>500 will become 0>255).

Real World

This field defines the label, value, or range that is displayed on the console when the function and feature is used. The selected function and feature will automatically define the type of value available within this field. For example, an intensity function will always be displayed as a percentage, while pan or tilt will always be displayed in degrees and strobe frequency in hertz (Hz). You may enter a single value or a range of values (0>260°) using the Thru key on the console keypad. The Real World range will be mapped directly to the corresponding DMX value range. Note that if a single value is entered (100%) for a corresponding DMX value range (0>255), then you will not be able to adjust the parameter throughout the defined range.
When defining the Real World values for a function/feature, you can simply enter the numeric value (0>100) and the predefined unit type will automatically be defined (for intensity this would appear as percentage, for position as degrees, for strobe as hertz); you do not have to enter in the unit type. Also if a Real World value is out of the range of the console, the minimum or maximum value will automatically be used (an entry of 0>200% will become 0>100%).

Many features also allow negative values to be used. When defining the real world values for a rotating gobo, for example, you could enter –50>50rpm. This real world range will be mapped directly to the corresponding DMX value range, so if the DMX value range was 0>255, then the real world value of 0rpm would be equal to a DMX value of 128 (positive rpm values would map to higher DMX values and negative rpm values would map to lower DMX values). Decimals may also be used with some Real World values (22.5>99.7rpm).

In the case of features defined as slots (gobos or colours), an additional popup box will become available when the Real World cell is selected. This dialog box will allow you to select a name for the gobo or colour from a predefined list of names. Slot entries will appear on the slot toolbar during programming. Additionally you can define an offset for the slot name (in the field at the bottom of the dialog). This offset defines the range used by the function when dialling values on the encoder wheel. Leaving this field blank will result in the default (0%) being used.

Additional function/feature selections may result in various Real World value selections via a dialog box. For instance, a strobe function and shutter feature will allow a Real World value entry of either ‘open’ or ‘closed’.

33.2 **Fixture Builder Tutorial**

This tutorial takes you through the process of building a custom fixture library for a fictitious fixture. Follow the steps to create a custom fixture library.
Fictitious 575 Protocol

<table>
<thead>
<tr>
<th>Ch.</th>
<th>Purpose</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intensity</td>
<td>0 to 255</td>
<td>0 is out 255 is full</td>
</tr>
<tr>
<td>2</td>
<td>Pan Coarse</td>
<td>0 to 255</td>
<td>540 degree pan</td>
</tr>
<tr>
<td>3</td>
<td>Pan Fine</td>
<td>0 to 255</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tilt Coarse</td>
<td>0 to 255</td>
<td>270 degree tilt</td>
</tr>
<tr>
<td>5</td>
<td>Tilt Fine</td>
<td>0 to 255</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cyan</td>
<td>0 to 255</td>
<td>0 is full, 255 is out</td>
</tr>
<tr>
<td>7</td>
<td>Magenta</td>
<td>0 to 255</td>
<td>0 is full, 255 is out</td>
</tr>
<tr>
<td>8</td>
<td>Yellow</td>
<td>0 to 255</td>
<td>0 is full, 255 is out</td>
</tr>
<tr>
<td>9</td>
<td>Gobo</td>
<td>0</td>
<td>Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20-30</td>
<td>Gobo 1 (breakup)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31-40</td>
<td>Gobo 2 (bubbles)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41-50</td>
<td>Gobo 3 (cone)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51-60</td>
<td>Gobo 4 (radial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100-150</td>
<td>Gobo wheel spin fwd slow to fast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>151-200</td>
<td>Gobo wheel spin rev slow to fast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>201-255</td>
<td>Random gobo slow to fast</td>
</tr>
<tr>
<td>10</td>
<td>Shutter</td>
<td>0</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-127</td>
<td>Linear Strobe slow to fast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128-200</td>
<td>Random Strobe fast to slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>201-210</td>
<td>Reset Fixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>221-230</td>
<td>Strike Lamp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>231-240</td>
<td>Shutdown fixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>241-250</td>
<td>Douse Lamp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>255</td>
<td>Open</td>
</tr>
</tbody>
</table>

33.2.1 Step 1: Create the New Fixture

To create the new fixture:

1. **Setup → Patch**: open the Fixture window.
2. Press the Fixture Builder button.
3. Click **OK** on the warning dialog.
4. Press the **Create New** button. The Create New Custom Type window will open.

33.2.2 Step 2: Enter Fixture Details

Enter the Model Name, Author, and Notes by clicking in each cell and pressing **Set**:

1. Name the model: **Tutorial**
2. Enter your name for Author.

3. Enter any notes.

4. Adjust the channel count to match Protocol : 10 channels.

5. Click OK to close this window and start the fixture creation.

The blank new fixture will be displayed:
33.2.3 **Step 3: Configure Channel Functions and Features**

Intensity

1. Select the Function cell for channel 1 and press Set. A dialog will appear with a list of function categories.

2. Select Intensity on the left column to display a list of Intensity function subcategories.

3. Select Intensity as the desired function. The window will close and you will see intensity assigned as the function and feature for channel 1. Note that the feature column will auto-fill with ‘Intensity’.

4. Select the DMX value cell for channel 1 and press Set. Enter the DMX values range for the intensity channel (0>255) and press Enter.

5. Select the Real World value cell for channel 1 and press Set. Enter the Real World value to be displayed in percentage (0>100) and press Enter.

Pan and Tilt (16 bit)

Define 16 bit channels for Pan and Tilt:

1. Select the channel cell for Channel 2 and press Set. Enter 2/3 to indicate that channels 2 and 3 combine to create a single 16-bit fixture.

2. Select the channel cell for Channel 3 and press Set. Enter 2/3 to indicate that channels 2 and 3 combine to create a single 16-bit fixture.

3. Repeat the above for channels 4 and 5.

Configure Pan and Tilt Functions:

1. Select the function cell for the first 2/3 channel and press Set. A dialog will appear with a list of function categories.

2. Select Position on the left column to display a list of Position function subcategories.
3. Select Pan as the desired function. The window will close and you will see pan assigned as the function and feature for channel 2. Note the feature column will auto-fill with ‘Pan’.

4. Select the DMX value cell for channel 2/3 and press Set. Enter the DMX values range for the intensity channel (0>65535) and press Enter.

5. Select the Real World value cell for channel 2/3 and press Set. Enter the Real World value to be displayed in degrees (-270>270°) and press Enter. This real world value will map the 540 degrees of movement across the DMX range so the middle of the range (32768) is equal to 0°. Note that you could instead enter 0>540° if desired, but then this would be different than existing fixtures as the 0° value would equal a DMX value of 0.

6. Repeat the above for the second 2/3 channel.

7. Repeat all of the above for Tilt on the two 4/5 channels.

Cyan, Magenta, Yellow

1. Select the function cell for channel 6 and press Set. A dialog will appear with a list of function categories.

2. Select Colour on the left column to display a list of Colour function sub-categories.

3. Select Cyan as the desired function. The window will close and you will see Cyan assigned as the function and feature for channel 6. Note the feature column will auto-fill with ‘variable’.

4. Select the DMX value cell for channel 6 and press Set. Enter the DMX values range for the Cyan channel (255>0) and press Enter. Note that the DMX value is inverted because the protocol shows 0 is full colour and 255 is no colour.

5. Select the Real World value cell for channel 6 and press Set. Enter the Real World value to be displayed in percentage (0>100) and press Enter.

6. Repeat the above steps for Magenta on channel 7 and Yellow on channel 8.

Gobo Wheel

Since the DMX Protocol lists 8 discrete DMX values or ranges used by channel 9, the number of DMX entries needs to be increased for this channel:

1. Select the Channel cell for channel 9.

2. Press the New DMX Entry button to add an additional DMX entry for channel 9.
3. Repeat the above until there are 8 channel entries for this channel:

Define each DMX entry for Slots:

1. Select the function cell for a blank DMX Entry of channel 9 and press Set. A dialog will appear with a list of function categories.
2. Select Beam on the left column to display a list of Beam function sub-categories.
3. Select Gobo as the desired function. The window will close and you will see Gobo assigned as the function and feature for channel 9. Note the feature column will auto-fill with ‘slots’.
4. Select the DMX value cell for this DMX Entry and press Set. Enter the DMX values range for the first gobo value (0) and press Enter.
5. Select the Real World value cell for this DMX Entry and press Set. A dialog box will display a list of slot names. Select a slot name and press Enter.
6. Repeat the above steps for the other DMX entries for each gobo in the protocol.

Define each DMX entry for Spins:
1. Select the function cell for a blank DMX Entry of channel 9 and press Set. A dialog will appear with a list of function categories.

2. Select Beam on the left column to display a list of Beam function sub-categories.

3. Select Gobo as the desired function. The window will close and you will see Gobo assigned as the function and feature for channel 9. Note the feature column will auto-fill with ‘slots’. Select this cell and press Set. Choose Spin from the dialog box.

4. Select the DMX value cell for this DMX Entry and press Set. Enter the DMX range values for the gobo spin according to the DMX protocol (100>200) and press Enter.

5. Select the Real World value cell for this DMX Entry and press Set. Enter the Real World value to be displayed in RPM (-100>100rpm) and press Enter.

6. Repeat the above steps for the random spin portion of the protocol using another DMX entry for channel 9.

Strobe/Control Channel

The number of DMX entries needs to be increased for this channel:

1. Select the Channel cell for channel 10.

2. Press the New DMX Entry button to add an additional DMX entry for channel 10.

3. Repeat the above until there are 8 channel entries for this channel.

Define each DMX entry for Strobe:

1. Select the function cell for a blank DMX Entry of channel 10 and press Set. A dialog will appear with a list of function categories.

2. Select Intensity on the left column to display a list of Intensity function sub-categories.

3. Select Strobe as the desired function. The window will close and you will see Strobe assigned as the function for channel 10. Note the feature column will auto-fill with ‘Shutter’.

4. Select the DMX value cell for this DMX Entry and press Set. Enter the DMX value for the Open Shutter according to the DMX protocol (0) and press Enter.
5. Select the Real World value cell for this DMX Entry and press Set. A dialog box will display a list of shutter options. Select the ‘open’ shutter option and press Enter.

6. Repeat the above steps for the ‘closed’ shutter ability of the fixture.

7. Select the function cell for a blank DMX Entry of channel 10 and press Set. A dialog will appear with a list of function categories.

8. Select Intensity on the left column to display a list of Intensity function sub-categories.

9. Select Strobe as the desired function. The window will close and you will see Strobe assigned as the function for channel 10. Note the feature column will auto-fill with ‘Shutter’. Select this cell and press Set. Choose Rate from the dialog box.

10. Select the DMX value cell for this DMX Entry and press Set. Enter the DMX range for the Linear Strobe according to the DMX protocol (1>127) and press Enter.

11. Select the Real World value cell for this DMX Entry and press Set. Enter the Real World value to be displayed in Hertz (0>30hz) and press Enter.

12. Repeat steps 8-13 for the random strobe ability of the fixture.

Fixture Control commands from Strobe channel:

1. Select the function cell for a blank DMX Entry of channel 10 and press Set. A dialog will appear with a list of function categories.

2. Select Control on the left column to display a list of Control function sub-categories.

3. Select Fixture Control as the desired function. The window will close and you will see Fixture Control assigned as the function for channel 10. Note the feature column will auto-fill with ‘Idle’. Select this cell and press Set. Choose Global Reset from the dialog box.

4. Select the DMX value cell for this DMX Entry and press Set. Enter the DMX for the fixture reset according to the DMX protocol (205) and press Enter.

5. Repeat the above steps for the shutdown ability of the fixture.

Note that Real World values are not allowed for Control functions.

Lamp Control commands from Strobe channel:

1. Select the function cell for a blank DMX Entry of channel 10 and press Set. A dialog will appear with a list of function categories.

2. Select Control on the left column to display a list of Control function sub-categories.

3. Select Lamp Control as the desired function. The window will close and you will see Lamp Control assigned as the function for channel 10. Note the feature
column will auto-fill with ‘Strike’. Select this cell and press Set. Choose Douse from the dialog box.

4. Select the DMX value cell for this DMX Entry and press Set. Enter the DMX for the lamp douse according to the DMX protocol (245) and press Enter.

5. Repeat the above steps for the lamp strike ability of the fixture.

Note that Real World values are not allowed for Lamp Control functions.

33.2.4 Step 4: Build the Fixture

Your fixture should be similar to the example below:

![Fixture Builder](image)

To build the fixture:

1. Press the Build Type button to build the fixture library.

2. If any errors are found a dialog will explain the error. Make any corrections and build again.

3. A dialog box will confirm a successful build of a library:
33.2.5 **Step 5: Add the Fixture in the Fixture Schedule**

1. Open the Fixture Schedule window and scroll to the User Created manufacturer.
2. Select your new fixture and press Set. Enter the number of fixtures to be used in the show.
3. Press OK and patch the fixtures, swap axes, and so on, as normal:

4. ![Fixture Schedule Window](image)

33.2.6 **Step 6: Edit Fixture to Define Default Values**

To define the default values for your new fixture, you can edit the defaults for each parameter in the Edit Fixtures window:

5. ![Edit Fixtures Window](image)
33.2.7 **Step 7: Programming Your Custom Fixture**

When programming with the fixture from the tutorial, bear in mind the following:

- Pan and Tilt are 16-bit DMX, but appear as a single parameter (and use 2 DMX channels each).
- Cyan, Magenta, and Yellow function properly in respect to the DMX values being inverted from the Real World value.
- The Gobo slots appear on the Slot toolbar.
- The Gobo Spin and Random functions appear on the Gobo encoder wheel.
- The various types of parameters that are controlling channel 10: shutter, strobe, fixture control, and lamp control. Notice how each appears as unique functions, although they all output on the same DMX channel.
Section 34: Keyboard Shortcuts

You can use an external keyboard to operate many of the Wholehog OS’s functions. This is especially useful if you are using the Hog 3PC or Rack Mount Unit versions of the console.

You can toggle keyboard shortcuts on and off using the Pause or Break key on the computer keyboard. When shortcuts are enabled (known as map mode), the computer keyboard is mapped to the shortcuts; when disabled, text entry via the computer keyboard is possible. The current status is shown in the Command Line Toolbar; see Figure 34.1, “Keyboard Status in the Command Line Toolbar”. Whenever possible, Wholehog OS intelligently disables the keyboard shortcuts when text entry is expected (after pressing Set or double clicking in a cell). When the text entry session is completed, the shortcuts are automatically re-enabled.

By default, shortcuts are disabled when you start a show. When shortcuts are disabled, only the shortcut mapped to the Set key remains functional to allow quick labeling from the external keyboard.

Figure 34.1. Keyboard Status in the Command Line Toolbar

The following table show how keys map to Wholehog OS functions when using a US keyboard:
<table>
<thead>
<tr>
<th>Function</th>
<th>Keystroke</th>
<th>Function</th>
<th>Keystroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toggle Shortcuts</td>
<td>Pause or Break</td>
<td>Main GO</td>
<td>} or } or Space</td>
</tr>
<tr>
<td>Pig</td>
<td>CTRL</td>
<td>Main Pause</td>
<td>{ or [</td>
</tr>
<tr>
<td>Open</td>
<td>ESC or O</td>
<td>Skip Fwd</td>
<td>K</td>
</tr>
<tr>
<td>Set</td>
<td>NumLock or Insert</td>
<td>Skip Back</td>
<td>J</td>
</tr>
<tr>
<td>Intensity</td>
<td>F11</td>
<td>Goto</td>
<td>G</td>
</tr>
<tr>
<td>Position</td>
<td>F2</td>
<td>Release</td>
<td>Z</td>
</tr>
<tr>
<td>Colour</td>
<td>F3</td>
<td>Pig + Release</td>
<td>ALT + Z</td>
</tr>
<tr>
<td>Beam</td>
<td>F4</td>
<td>Assert</td>
<td>A</td>
</tr>
<tr>
<td>Effects</td>
<td>F7</td>
<td>Next Page</td>
<td>: or ;</td>
</tr>
<tr>
<td>Macro</td>
<td>F5</td>
<td>@</td>
<td>' or @</td>
</tr>
<tr>
<td>Group</td>
<td>F1</td>
<td>Full</td>
<td>~ or #</td>
</tr>
<tr>
<td>Fixture</td>
<td>F12</td>
<td>Thru</td>
<td>*, > or X</td>
</tr>
<tr>
<td>Scene</td>
<td>F9</td>
<td>Minus (-)</td>
<td>- or _</td>
</tr>
<tr>
<td>Cue</td>
<td>F10</td>
<td>Plus (+)</td>
<td>= or +</td>
</tr>
<tr>
<td>List</td>
<td>F8</td>
<td>slash (/)</td>
<td>/ or ?</td>
</tr>
<tr>
<td>Page</td>
<td>F6</td>
<td>Point (.)</td>
<td>. or ></td>
</tr>
<tr>
<td>Record</td>
<td>R</td>
<td>Choose Master 1-10</td>
<td>ALT + 1 - 0</td>
</tr>
<tr>
<td>Merge</td>
<td>E</td>
<td>GO Master 1-10</td>
<td>TAB + 1 - 0</td>
</tr>
<tr>
<td>Move</td>
<td>M</td>
<td>Pause Master 1-10</td>
<td>Backspace + 1-0</td>
</tr>
<tr>
<td>Copy</td>
<td>P</td>
<td>Undo</td>
<td>CTRL + Z</td>
</tr>
<tr>
<td>Delete</td>
<td>D or Delete</td>
<td>Redo</td>
<td>CTRL + Y</td>
</tr>
<tr>
<td>Update</td>
<td>U</td>
<td>Visual Cut</td>
<td>CTRL + X</td>
</tr>
<tr>
<td>Live</td>
<td>V</td>
<td>Visual Copy</td>
<td>CTRL + C</td>
</tr>
<tr>
<td>Time</td>
<td>T</td>
<td>Visual Paste</td>
<td>CTRL + V</td>
</tr>
<tr>
<td>Setup</td>
<td>S</td>
<td>Visual Select Range</td>
<td>CTRL + cursors</td>
</tr>
<tr>
<td>Control</td>
<td>L</td>
<td>Backspace</td>
<td>backspace</td>
</tr>
<tr>
<td>Fan</td>
<td>F</td>
<td>Enter</td>
<td>Enter</td>
</tr>
<tr>
<td>Highlight</td>
<td>H</td>
<td>GM</td>
<td>\ and or</td>
</tr>
<tr>
<td>Blind</td>
<td>B</td>
<td>Central Choose</td>
<td>ALT + -</td>
</tr>
<tr>
<td>Clear</td>
<td>C</td>
<td>Bottom Right toolbar</td>
<td>TAB + F1 - F12</td>
</tr>
<tr>
<td>Next</td>
<td>N</td>
<td>Top Left toolbar</td>
<td>Shift + F1 - F12</td>
</tr>
<tr>
<td>Back</td>
<td>Y</td>
<td>Top Right toolbar</td>
<td>ALT + F1 - F12</td>
</tr>
</tbody>
</table>
Section 35: Pig Key Commands

The Pig key is the Wholehog OS's main modifier key; it can be used to modify or extend many of the console's commands. The following tables lists its uses, with keys and buttons, and with other controls.
Pig with Keys and Buttons

<table>
<thead>
<tr>
<th>Use</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig + @</td>
<td>When patching with View by DP enabled, unpatches the selected fixtures.</td>
</tr>
<tr>
<td>Pig + Backspace</td>
<td>Removes values from the currently highlighted cells in the Programmer or editor.</td>
</tr>
<tr>
<td>Pig + Blind</td>
<td>When leaving blind mode, parameters will fade to their new values in the assigned or default fade time, rather than snapping to their new values.</td>
</tr>
<tr>
<td>Pig + Choose</td>
<td>Opens the playback options for the cuelist on the selected master.</td>
</tr>
<tr>
<td>Pig + Copy</td>
<td>Copies the contents of the currently selected cells.</td>
</tr>
<tr>
<td>Pig + Flip</td>
<td>When using Flip to cycle a fixture through its flip positions, goes through the possible positions in the reverse order to Flip without Pig.</td>
</tr>
<tr>
<td>Pig + Go</td>
<td>Equivalent to pressing Go on all masters.</td>
</tr>
<tr>
<td>Pig + Next (on the View Toolbar)</td>
<td>Changes the view to the previous view, rather than the next view.</td>
</tr>
<tr>
<td>Pig + Next Page</td>
<td>Changes the page to the previous page, rather than the next page.</td>
</tr>
<tr>
<td>Pig + Nudge Up (above the I-Wheel)</td>
<td>Nudges the intensity up by half the set nudge value.</td>
</tr>
<tr>
<td>Pig + Nudge Down (below the I-Wheel)</td>
<td>Nudges the intensity down by half the set nudge value.</td>
</tr>
<tr>
<td>Pig + Open + Backspace</td>
<td>Opens the Launched Processes window.</td>
</tr>
<tr>
<td>Pig + Open + Colour</td>
<td>Opens the Colour Picker rather than the Colour Directory.</td>
</tr>
<tr>
<td>Pig + Park</td>
<td>Unparks selected fixtures, rather than parking them.</td>
</tr>
<tr>
<td>Pig + Record</td>
<td>Pastes into the currently selected cells.</td>
</tr>
<tr>
<td>Pig + Release</td>
<td>Releases all masters.</td>
</tr>
<tr>
<td>Pig + Setup</td>
<td>Toggles the worklight on and off (Road Hog only).</td>
</tr>
<tr>
<td>Pig + Size (on the Window Control Toolbar)</td>
<td>Cycles through the possible window sizes in the reverse order.</td>
</tr>
<tr>
<td>Pig + Touch</td>
<td>Un-touches specified parameters and fixtures, rather than touching them.</td>
</tr>
<tr>
<td>Pig + Undo</td>
<td>Redoes the last undone action.</td>
</tr>
<tr>
<td>Pig with the arrow keys</td>
<td>Extends the selected cells or directory items in spreadsheets and directories.</td>
</tr>
<tr>
<td>Pig when pressing a button in a directory</td>
<td>Overrides the effect of the Guard button.</td>
</tr>
<tr>
<td>Pig with Other Controls</td>
<td>Result</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Pig when entering text with the on-screen keyboard</td>
<td>Acts as a shift key, to type upper case characters.</td>
</tr>
<tr>
<td>Pig with the I-Wheel</td>
<td>Intensities are increased or decreased in proportion to their individual level, rather than all intensities changing by the same amount. For example, if fixture 1 is at 10%, 2 at 50% and the wheel is increased by 10%, then fixture 1 will move to 11% and 2 will move to 55%.</td>
</tr>
<tr>
<td>Pig with parameter wheels</td>
<td>Moving the parameter wheel with Pig allows fine adjustment of the parameter, so that each turn of the wheel will change the parameter value by a smaller amount, making exact adjustments easier.</td>
</tr>
<tr>
<td>Pig when dragging files in the File Browser pane of the Show Manager window</td>
<td>Copies the dragged files, rather than moving them.</td>
</tr>
<tr>
<td>Pig when starting up the console</td>
<td>Opens the boot menu.</td>
</tr>
</tbody>
</table>
Section 36: Upgrading and Care of the Console

36.1 Updating Software

36.1.1 Updating the Console Software

Wholehog software can be easily upgraded on a Wholehog 3 console using a fpspkg file and other Wholehog OS systems with an msi file.

To upgrade software from an fpspkg or msi file downloaded from the Flying Pig Systems website (www.flyingpig.com):

1. Check that the file has a name like gut_x.x.x._(Build xx).fpspkg or Hog3PC-Win32-golden_x-x-x-xx.msi.
2. Copy the file to external media such as a CD, Zip disk or USB Flash drive.
3. Start the Wholehog software.
4. When the Start window appears, press the Software button, located on the bottom of the Start window.
5. Insert the CD, Zip disk or Flash drive containing the upgrade file.
6. Select CD-ROM or Zip as the source of the upgrade file, as appropriate.
7. Select the file containing the software version to upgrade, and press OK.
8. Wholehog OS will continue with the upgrade without further interaction. Note that this may take several minutes. After it finishes the upgrade, Wholehog OS will restart.

36.1.2 Clean Install

You may occasionally need to do a ‘clean install’ of the software, which completely replaces the software rather than just upgrading parts that have changed in the new release. This isn’t recommended unless you have been having problems with the console and you have been advised to do a clean install by Flying Pig Systems support staff.

When using a Road Hog console, refer to Restoring the Road Hog System Files (p.369) for image recovery instructions. The information below details performing a clean install on a Wholehog 3 console or Rack Mount Unit.

Important

Before installing new software, ensure that your show data is backed up. A Full Install will erase all data on the console’s hard drive.

To do a clean install:
1. First ensure that your data stored on the hard drive is backed up onto CD, Zip disk, or flash drive. See Backing Up (p.124).

2. Restart the console, holding down the Pig key until a boot menu appears.

3. Place the software CD-ROM in the console's drive and close it.

4. Use the Up and Down arrow keys to select Full Install in the menu, and then press Enter.

5. The installation will occur without further user interaction. Note that it will take several minutes to complete.

Occasionally it may also be necessary to update the console's BIOS, which is the software stored in memory that starts the console up. This can also be done by selecting an option from the boot menu which will read the BIOS from a CD-ROM. You should only do this when explicitly instructed and care should be taken to follow all directions, as an improper BIOS installation can leave the console unusable.

36.1.3 Updating the DMX Processor Software

Normally, updating the console software will also update the software of connected network processors. If necessary, you can update the software manually:

2. Press the Software Update button.
3. A window will open and display a list of DMX Processors whose software does not match the console. Click on the check boxes of DMX Processors that you want to update, and press Reload.
4. The console will update the software. Wait a couple of minutes until all DMX Processors are shown as found in the Network window.

Sometimes, if the console and network processor are running different software versions, the console may not recognise the network processor on the network. To overcome this, you can force the network processor to update its software from the console:

1. Turn off the mains power to the network processor. Check that it is connected to the console on the network.
2. Turn the network processor back on, while holding down the key on the network processor's front panel.
3. The network processor will download its software from the console.

DMX Processor 8000 Reset Options

The keys on the front panel of the DMX Processor 8000 are used for standard menu navigation. However as the unit boots you can view specific boot information via a scroll bar. Once the DMX Processor 8000 is fully booted, it displays the standard menu. In addition the following reset options are available:
Hard Reset: to force a hard reset of the DMX Processor 8000, hold the ● and ➢ buttons for four seconds. Once the reset begins you will see I/O Board Disconnected on the display.

DMX Board Firmware Reload: to reload the DMX board firmware from the Processor's front panel, hold down any single key as the unit is powered on. Once the process begins you will see the DP8000 Bootloader message on the display. After about one minute the firmware will be reloaded.

CPU Board Firmware Reload and Restore to Defaults: to reload the CPU board firmware hold down the ●, ● and ➢ keys as the unit is powered on. The DMX Processor 8000 will then reload its firmware from the network. Once the process begins you will see the Forcing Software Reload message on the display.

36.2 Care of Touch Screens on Wholehog Consoles

The touch panels and liquid crystal displays (LCDs) require some care in use to ensure their longevity:

- Do not allow sharp objects to come into contact with the screen. Objects such as the eraser end of a pencil can provide an alternative to fingertips.
- If you need to clean the screens, use a soft, dry, lint-free cloth; don't use any solvents, chemical or abrasive cleaners.
- The LCD operating temperature must be between 0 and 45 degrees Celsius (32 to 113 Fahrenheit).
- You should keep the LCDs out of direct sunlight. Too much exposure to the sun may cause the screens to turn black, requiring several hours to cool and return to normal. If this happens you can use External Displays (p.63) and the Trackball and Wheels (p.64) instead. To avoid this, use the Wholehog 3 in the shade when programming outdoors.

36.3 Front Panel Care

The front panel needs no particular care to ensure longevity over and above the obvious. You can clean it with a soft, dry, lint-free cloth; don't use any solvents, chemical or abrasive cleaners. Do not allow fluids, dirt, or other doubtful substances to come into contact with the console.

In the event of fluid getting into the console disconnect mains power immediately and consult your nearest service agent. Some support contact details are shown in the front of this manual.
36.4 **DMX Processor 8000 Hardware Installation and Maintenance**

36.4.1 **DMX Processor 8000 Installation**

The DMX Processor 8000 has several features to help ensure a reliable installation:

USB Retainer: the back of the DMX Processor 8000 includes a thumbscrew retainer for securing USB cables. This is recommended to prevent the USB from becoming disconnected accidentally.

V-Lock Style Locking Power Connector: the DMX Processor 8000 ships with a special IEC cable with a locking power connector. In addition a standard IEC cable can be used.

Rack Mounting and Back Support: when installing the DMX Processor 8000 in a rack, ensure the cooling vents are not obstructed and that sufficient ventilation is possible. DMX Processor 8000 is 280mm deep and may require back support in some racks. The unit is equipped with four M3x0.5 threaded inserts on the back of the chassis for attachment of rack supports. The mounting screws should not protrude more than 3mm into the chassis.
Refer to www.flyingpig.com/support/hog3/techdrawings/ for detailed support bracket drawings.

36.4.2 DMX Processor 8000 Maintenance

Washable Air Filter: the DMX Processor 8000 includes a washable air filter as part of its air management system. Rinse the filter only in clean warm water and ensure it is dry before reinstalling. When inserting the filter, face the plastic frame towards the power connector.

If the filter becomes worn or overly soiled, replace it immediately. Replacement filters are available from High End Systems.
Cooling Fans: the cooling fans within the DMX Processor 8000 are software controlled and only run as needed. They may cycle on and off during normal operation. You can monitor the temperature and fans using the Diagnostics pane of the DMX Processor Settings window:

2. Select the DMX Processor in the list by clicking on its Network Number, and press the Settings button to open the DMX Processor Settings window.
3. Select the Diagnostics pane; see Figure 36.1, “The Diagnostics pane of the DMX Processor Settings window”.

Tip
The middle fan will only enable under extreme heat conditions and will register a zero value under normal circumstances.
Figure 36.1. The Diagnostics pane of the DMX Processor Settings window
Section 37: Getting Help

You can open Wholehog OS's built-in User Manual by pressing the Help button on the Window Control Toolbar at the top of the right-hand screen. This will open the relevant part of the User Manual for the frontmost window.

If you are having problems with the console, try the trouble shooting guide below. If you cannot rectify the problem, or you think that it is because the console is not working as it should, please contact support@flyingpig.com, following the guidelines in Reporting Problems with the Console (p.423).

37.1 Troubleshooting

37.1.1 The console appears to have crashed or frozen

Wholehog OS runs as a series of separate ‘processes’ that can start and stop individually. Often, when the console appears to have crashed or frozen, it is only one process that is causing the problem, while the rest of the processes are still running normally. In particular, an editor or the desktop may crash, while playback continues normally. Before restarting the entire console, therefore, you should see if the problem can be cured by restarting the individual process:

1. Pig + Open + Backspace : open the Launched Processes window; see Figure 37.1, “The Launched Processes window”.
2. Kill processes that are not responding by right clicking on them and selecting Kill.
3. Restart the process by right clicking and selecting Restart. An exception is the Editor process which will disappear when killed; you can restart it by re-opening the Programmer or an editor window.

37.1.2 The console isn't talking to the DMX Processors

1. Check that the display on the DMX Processor shows ‘Outputs Active’. If it does not, then see if it is in the process of getting the show data or connecting, or crashed. if it has crashed, restart it by disconnecting the mains power, waiting a few moments, and reconnecting it.
2. Check the network cabling. If the DMX Processor is connected directly to the console then an RJ45 cross-over cable needs to be used. If the DMX Processor is connected via a switch or hub then normal (non-crossover) RJ45 cables need to be used. The Link light will be lit on the DMX Processor if the correct connection has been made.
3. Check the network settings. The DMX Processor and console both need to be on the same subnet.
4. Check the **port number** setting. The DMX Processor and console both need to have the same Port Number. See *Network Settings* (p.83) and *Building a Hog-Net Network* (p.71).

5. Check the software. The DMX Processor and console both need to be running the same version of the software; see *Updating the DMX Processor Software* (p.414).

37.1.3 The console doesn't start, or shuts down shortly after switching it on

- If a software update has failed the console can get into a state where it either fails to start properly, or it goes immediately to the shutdown screen. A full re-install will be necessary; see *Clean Install* (p.413).

37.1.4 The playback controls don't behave as expected

- Check that the playback controls haven't been mapped to different functions to their normal ones. See *Configuring Playback Controls* (p.313).

37.1.5 The Front Panel Reboots Unexpectedly

Care should be taken when transmitting a personal radio while in close proximity to a console front panel. Always keep radio transmitting devices at least eight inches from the console surface.

In the event of a radio transmitting within close proximity of the console, the front panel firmware may reboot causing a temporary loss of control of the keys and hardware for approximately 20 seconds. During this time the desk lights may dim as well. After 20 seconds the front panel will reboot and normal functionality will be restored. If the problems persist, move the radio transmitting device further from the console.
37.2 Reporting Problems

When reporting problems with the console (known as “bugs”) it is important that the information you provide is as clear and detailed as possible to ensure that the problem can be fixed. Please follow the guidelines below.

Please report bugs to:

support@flyingpig.com

24/7 phone support: +1-800-890-8989

http://forums.highend.com

37.2.1 Reporting Problems with the Console

Please include the following information in your bug report:

1. The piece of hardware that exhibited the problem, including the version number of the software being used.
2. The actions taken that induce the problem in the first place, including whether the problem is repeatable using the same actions.
3. The symptoms of the problem.
4. The network configuration of system.
 - The type and number of Wholehog console systems in use
 - How many DMX Processors and MIDI/Timecode Processors.
 - What sort of routers/hubs are being used.
 - Other PC’s or applications (such as Artnet, ETCNet, Web Servers, and so on) that are sharing the same network.

Once a problem has been reported it will often be necessary for the support team at Flying Pig Systems to clarify some of the details and obtain additional information. Typically this ends up with a request for a copy of the show, so a backup of the show should be transferred to a PC where it can be mailed to support@flyingpig.com.

Tip

The version number of the software installed on your console can be found on the System Info pane of the Control Panel window.
37.2.2 Reporting Problems with Hog 3PC

In the event of a failure with Hog 3PC, it is important to provide as much information as possible. Different computer configurations, other applications, and additional hardware may all have unexpected results. When reporting errors, please provide the following information:

- Name
- Date
- Hog 3PC software version and build number
- Operating system
- Computer specifications
- Number of displays
- Connected USB devices
- Networked devices
- Other running applications
- Detailed description of the problem including instructions to reproduce (if possible) and the exact syntax used
- List of any errors reported by the software

If Hog 3PC crashes or fails, it will output a .dmp file in the application directory, for example ‘C:\Program Files\Flying Pig Systems\Hog3PC’ (if you accepted the default location when you installed Hog 3PC). Please send this .dmp file along with your bug report to support@flying-pig.com.

37.2.3 Reporting Problems with the User Manual

Please include the following information in your bug report:

1. The nature of the problem:
 - Missing information.
 - Incorrect information.
 - Unclear or ambiguous information.
 - Unable to find information in the index.

2. The section number where the problem is.

3. The version number of the manual. In printed and PDF editions, you can find this on the title page at the start of the manual. The on-line help within the console shows the version on the main contents page; you can go to this page by clicking ‘home’ at the bottom of any page.
37.2.4 About Software Version Numbering

The software version number is made up of four parts: the major version number, the minor version number, the current release number, and the build number. For example:

1.3.8 (772) : 1 is the major number, 3 is the minor version number, 8 is the current release, and 772 is the build

37.2.5 About Beta Software

As new releases of Wholehog OS are developed, High End Systems relies on input from console users. If you are interested in learning more about the High End Systems Software Testing Program, please visit www.flyingpig.com.
Section 38: Servicing

This console must be serviced by qualified personnel. The information in this section is intended to assist qualified personnel only. For information on the care of the console, see *Upgrading and Care of the Console (p.413)*.

38.1 Replacing Wholehog 3 Touch Screens

Caution
Always shut down and disconnect the mains power before removing the front panel.

Damaged touch screens are easily replaced:

1. With the LCD box in the vertical position undo the six screws using a 4mm allen key.
2. Carefully remove the LCD panel and Soft Key strips.
3. With the LCD box in the horizontal (flat) position undo the four thumbscrews of the panel to be changed.
4. Unplug the touch screen cable from the central PCB.
5. Very carefully lift off the touch screen leaving the Soft Key PCBs in place.
6. Replace with a new touch screen making sure the panel is pushed to the right for correct alignment.
7. Replace and gently tighten the thumbscrews and re-connect the cable ensuring correct pin alignment.
8. With the LCD box back in the vertical position fit the LCD screen and Soft Keys.
9. Replace and tighten the six screws starting with the centre pair.
10. Calibrate the touch screen. See *Touch Screens (p.62)*.

38.2 Replacing Faders

Caution
Always shut down and disconnect the mains power before removing the front panel.

Flying Pig Systems
Damaged or dirty faders are easily replaced:

1. Remove the parameter wheel knobs using a 2mm Allen key to loosen the grub screws.
2. Pull off the fader knobs and position the faders at 50%.
3. Undo the four screws with a 4mm Allen key, and carefully lift off the front panel. Note that the front panel is intentionally concave.
4. Gently unplug the fader's flying lead and lift the fader to unclip it from the PCB.
5. Clean fader if required. See Cleaning Faders (p.428)
6. Fit the new fader in place ensuring that it sits completely flat against the PCB; this is crucial.
7. Reconnect the fader flying lead and position the fader at 50%.
8. To re-assemble, follow steps 3 through 1.

38.3 Cleaning Faders

Faders are often unnecessarily discarded when all they need is a clean:

1. Remove the dirty fader. See Replacing Faders (p.427).
2. Undo the top crosshead screw (furthest from the flying lead) using a small Philips screwdriver.
3. Remove the top end cap.
4. Very carefully slide the whole mechanical assembly out from the other, bottom end.
5. Very carefully slide the track assembly out from the bottom end.
6. Wipe tracks and wipers with a dry, clean tissue. Do not use solvents.
7. Re-insert track assembly.
8. Very carefully re-insert mechanical assembly.
9. Fit top end cap and replace and tighten screw.
10. Replace the cleaned fader. See Replacing Faders (p.427).
38.4 Replacing the Trackball

Caution

Always shut down and disconnect the mains power before removing the front panel.

To replace the Trackball:

1. Remove the front panel. See Replacing Faders (p.427) steps 1 to 3.
2. Lift track ball out of its bezel.
3. Unplug the cable assembly from the trackball PCB
4. Reconnect and replace new Trackball.

Important

The only occasion on which the front panel PCB itself needs to be removed is to access the mass storage devices underneath; a procedure beyond the scope of this manual.
Section 39: Technical Specifications

39.1 **Wholehog 3 Console**

39.1.1 **Input and Output Connections**

![Figure 39.1. Rear panel of the console](image)

From right to left when viewing the console from the back:

- **Mains in:** IEC 320 connector (5A/250V rated cable supplied) 100-240V, 50/60Hz, 2A maximum
 2 x 5x20mm 5A T fuses

- **MIDI in & out:** Fully compliant Musical Instrument Digital Interface input and output ports

- **VGA out:** 15 pin double density D type
 IBM/PC compatible VGA/SVGA analogue display outputs (x2)

- **RS232:** Debug port for service/factory use only

- **Audio in & out:** 3.5mm stereo jack
 Soundblaster compatible audio line input and output

- **USB:** Fully compliant Universal Serial Bus 1.0 ports (x2)

- **Keyboard & mouse:** 5 pin mini-DIN
 IBM/PC PS2 compatible keyboard and mouse

- **Ethernet:** Neutrik Ethercon or standard RJ45
 Fully compliant 10base-T or 100base-TX Ethernet port

39.1.2 **Power, Weight and Dimensions**

- **Power:** 75W
- **Weight:** 22.5Kg
- **Dimensions:** 760mm (w) x 580mm (d) x 110mm (h), footprint smaller
39.2 **DMX Processor 8000**

39.2.1 **Input and Output Connections**

Mains in: V-Lock style locking IEC 320 connector
100-240V, 50/60Hz, 4A maximum

DMX out: Neutrik 5 pin female XLR
Isolated, Half Duplex DMX512 outputs (x8)

Ethernet: EtherCon
Fully compliant Gigabit Ethernet port (x2)

Expansion: USB-A 2.0 High Speed (x2)

39.2.2 **Power, Weight and Dimensions**

Power: 200W

Weight: 2.7Kg

Dimensions: 480mm (w) x 280mm (d) x 45mm (h)
1U, 19 inch rack compatible

39.3 **Touchscreen Monitor**

39.3.1 **Input and Output Connections**

Mains in: External Power Supply with IEC 320 connector.
100-240V, 50/60Hz, 1.5A maximum

Analogue video in: 15 pin double density D type

Digital video in: DVI-D connector

USB: Type B USB input socket

39.3.2 **Power, Weight and Dimensions**

Power: 45W

Weight: 9.8Kg

Dimensions: 434mm (w) x 238mm (d) x 430mm (h)
39.3.3 Performance

Display: 17.0" Diagonal active matrix TFT LCD
Native resolution: 1280 x 1024
Input frequency: 31.5 - 80 kHz (H), 56-75 Hz (V)
Contrast ratio: 450:1 (typical)
Viewing angle: 160 x 160 degrees (typical)
Response: 16 ms (typical)
Brightness: 205 cd/m² (typical)
Section 40: Safety Information

40.1 Safety Information

40.1.1 Warning: For Continued Protection Against Fire

- This equipment for connection to branch circuit having a maximum overload protection of 20 A.

40.1.2 Warning: For Continued Protection Against Electric Shock

1. If this equipment was received without a line cord plug, attach the appropriate line cord plug according to the following code:
 - brown - live
 - blue - neutral
 - green/yellow - earth

2. As the colours of the cores in the mains lead of this equipment may not correspond with the coloured markings identifying the terminals in your plug, proceed as follows:
 - the core which is coloured green and yellow must be connected to the terminal in the plug which is marked with the letter E or by the earth symbol ⚑, or coloured green or green and yellow.
 - the core which is coloured blue must be connected to the terminal which is marked with the letter N or coloured black.
 - the core which is coloured brown must be connected to the terminal which is marked with the letter L or coloured red.

3. Class I equipment. This equipment must be earthed.

4. Equipment suitable for dry locations only. Do not expose this equipment to rain or moisture.

5. Disconnect power before servicing.

6. Refer servicing to qualified personnel; no user serviceable parts inside.
40.2 Informations Importantes Sur La Sécurité

40.2.1 Mise En Garde: Pour Une Protection Permanente Contre Les Incendies

- Cet appareil comporte une protection de 20 A contre les surcharges électriques.

40.2.2 Mise En Garde: Pour Une Protection Permanente Contre Les Chocs Électriques

1. Si cet équipement est livré sans prise sur le câble d'alimentation, veuillez connecter la prise de courant selon le code suivant:
 - marron - phase
 - bleu - neutre
 - vert/jaune - terre

2. Débrancher le courant avant d'effectuer des réparations.

3. Cet équipement doit être uniquement utilisé dans des endroits secs. Ne pas l'exposer à la pluie ou l'humidité.

4. À l'intérieur de l'équipement il n'y a pas de pièces remplaçables par l'utilisateur. Confiez l'entretien à un personnel qualifié.

5. Equipement de Classe I. Cet équipement doit être mis à la terre.

40.3 Wichtige Hinweise Für Ihre Sicherheit

40.3.1 Warnung: Zum Schutz Vor Brandgefahr

- Dieses Gerät darf nur an eine Zweigleitung mit einem Überlastungsschutz von höchstens 20 A angeschlossen werden.

40.3.2 Warnung: Zum Schutz Gegen Gefährliche Körperströme

1. Wenn dieses Gerät ohne einen Netzkabelstecker erhalten wurde, ist der entsprechende Netzkabelstecker entsprechend dem folgenden Code anzubringen:
 - Braun - Unter Spannung stehend
 - Blau - Neutral
 - Grün/Gelb - Erde
2. Da die Farben der Leitungen im Hauptanschluss möglicherweise nicht mit den farbigen Markierungen die die Anschlussklemmen identifizieren übereinstimmen, fahren sie wie folgt fort:

- Die blau gefärbte Leitung muss mit der mit dem Buchstaben N oder der Schwarz gefärbten Anschlussklemme verbunden werden.
- Die Braun gefärbte Leitung muss mit der mit dem Buchstaben L markierten oder rot gefärbten Anschlussklemme verbunden werden.

5. Vor Wartungsarbeiten stets den Netzstecker ziehen.

40.4 Información Importante De Seguridad

40.4.1 Advertencia: Para Protección Continua Contra Incendios

- Este equipo debe conectarse a un circuito que tenga una protección máxima contra las sobrecargas de 20 A.

40.4.2 Advertencia: Para La Protección Continua Contra Electrocutaciones

1. Si se recibió este equipo sin el enchufe de alimentacion, monte usted el enchufe correcto según el clave siguiente:

 - moreno - vivo
 - azul - neutral
 - verde/amarillo - tierra

2. Desconecte el suministro de energía antes de prestar servicio de reparación.

3. Este equipo se adecua a lugares secos solamente. no lo exponga a la lluvia o humedad.
4. Derive el servicio de reparación de este equipo al personal calificado. El interior no contiene repuestos que puedan ser reparados por el usuario.

5. Equipo de Clase I. Este equipo debe conectarse a la tierra.

40.5 Importanti Informazioni Di Sicurezza

40.5.1 Avvertenza: Per Prevenire Incendi

- Questa apparecchiatura è da collegarsi ad un circuito con una protezione da sovraccarico massima di 20 amperes.

40.5.2 Avvertenza: Per Prevenire Le Scosse Elettriche

1. Se questa apparecchiatura è stata consegnata senza una spina del cavo di alimentazione, collegare la spina appropriata del cavo di alimentazione in base ai seguenti codici:
 - marrone - sotto tensione
 - blu - neutro
 - verde/giallo - terra

2. Disinnestare la corrente prima di eseguire qualsiasi riparazione.

3. Questa apparecchiatura è da usarsi in ambienti secchi. Non è da essere esposta ne alla pioggia ne all'umidità.

4. Per qualsiasi riparazione rivolgersi al personale specializzato. L'utente non deve riparare nessuna parte dentro l'unità.

5. Aparecchio di Classe I. Questa apparecchiatura deve essere messa a terra.

40.6 Vigtig Sikkerhedsinformation

Advarsel: Beskyttelse mod elektrisk chock.

VIGTIGT! LEDEREN MED GUL/GROEN ISOLATION MAA KUN TILSLUTTES KLEMME MAERKET + ELLER ↓.
40.7 安全に関する情報

40.7.1 警告：火災からの継続的な保護の為に

- この装置には分岐回線への接続の為の最大 20 A の過負荷防止機構を持っています。

40.7.2 警告：感電に対する継続的な保護の為に

1. プラグの付いていない状態でこの装置を受け取った場合は、以下のコード表にしたがって、適切にプラグを取り付けて下さい。
 - Brown（茶色）- Live（ライブ）
 - Blue（青）- Neutral（ニュートラル）
 - Green/Yellow（緑/黄色）- Earth（アース）

2. ここで説明されている各部品に関する色があなたの持っているプラグの端末の色と対応していない場合があります。以下にしたがって接続して下さい。
 - Green/Yellow（緑/黄色）のケーブルを、プラグの端末に E もしくは アースのシンボル の表記のある物に接続するか、Green/Yellow（緑/黄色）の物に接続して下さい。
 - Blue（青）のケーブルを、プラグの端末に N が表記された物もしくは 黒に塗られた物に接続して下さい。
 - Brown（茶色）のケーブルを、プラグの端末に L が表記された物もしくは 赤に塗られた物に接続して下さい。

3. この装置は Class I 機器です。この為この装置はアースしなければなりません。

4. この装置は乾燥した状態でのみ使用出来ます。この装置を雨又は湿気にさらさないで下さい。

5. 修理点検を行う場合は事前に電源を切り離して下さい。

6. 整備点検の項目は資格を持った技師の為の物です。ユーザーによっては修理点検を行う物は存在していません。
Section 41: Front Panel Diagrams

Figure 41.1. Programmer section of the front panel
Figure 41.2. Playback section of the front panel
Glossary

10 Base-T An older flavour of Ethernet, that is slower (10 MBits per second) than the 100 Base-T used by Wholehog components. If connected to other equipment that only supports this flavour, then Wholehog components will automatically detect this, and run their Ethernet connections at this slower speed. However this is not the recommended way to set up your network.

See Also 100 Base-T.

100 Base-T A flavour of Ethernet, that supports data rates of up to 100 MBits per second. All Wholehog components support this flavour of Ethernet, and comply with all relevant standards, so networking equipment designed for 100Base-T should be compatible with the Wholehog.

See Also 10 Base-T.

A

@ button Means ‘at’ and can be used for assigning levels or patching via the keypad.

abstraction layer Wholehog OS separates (‘abstracts’) the user from the details of how fixtures work. For example, most values are expressed in real world values such as degrees of rotation, rather than DMX values.

accessories Extensions to the console or network can range from expansion wings, to DMX Processors.

See Also playback wing, widget, DMX Processor.

address See DMX address.

attribute See parameter.

automated light See fixture.

B

beam The distribution and quality of the fixture's beam. Such qualities may be changed through the introduction of parameters such as gobo, gobo rotation, soft or sharp edges, iris and diffusion.

See Also gobo, iris, diffusion.

blocking cue A blocking cue prevents changes made to earlier cues from tracking through to later cues.

See Also tracking.

board See console.

booting up See start up.

brightness See intensity.
buddying
During fanning, buddying keeps fixtures in ‘gangs’ that all take the same parameter value.
See Also fanning.

button
An on-screen control operated by clicking with the mouse or trackball, or directly by pressing then on the touch screens. In this manual the word ‘key’ is reserved for hardware buttons on the console's front panel.

C

cell
A single rectangle in a spreadsheet, containing a value.
See Also spreadsheet.

chase
A series of cues, that run automatically, connected with link and delay attributes.
See Also cue, cuelist.

chroma
See hue.

colour
Fixture colour, achieved through colour wheel, gel string or colour mixing.
A colour may have three attributes: intensity, hue and saturation.
See Also intensity, hue, saturation.

command line
A method of entering information into the Programmer, using the numerical keypad and the @ button.
See Also Programmer.

console
The user interface of a lighting control system. A Wholehog console is one component of a network that may include other Wholehog consoles, expansion wings, external devices, offline editors and visualisers, along with dimmers and fixtures.
See Also visualiser, playback wing.

console identifying number
The number that identifies the console when it is operating as part of a network.

conversion curve
A curve that defines the relationship between the plotted parameter value and the DMX value sent to the dimmer or fixture. Conversion curves are like dimmer curves or profiles on other consoles, and should not be confused with paths. Conversion curves are properties of the fixture, while the path is a property of a cue.
See Also path.

crossfade
A transition between two cues, one replacing the other.

cross-over cable
When you connect two Wholehog components (or computers) together directly, you need to use a special type of Ethernet cable called a cross-over cable. This is different from the normal type of Ethernet cable used with hubs and switches (see below). A cross-over cable is supplied with each console and DMX Processor.
See Also Ethernet.
Glossary

cue A look on stage, achieved through the manipulation of fixture parameters recorded as part of a cue list. A cue requires a trigger, either manual or automatic, and has attributes such as fade, wait and delay times.
See Also scene, fade time, wait time, delay time.

cuelist A group of cues that run in a specific order consecutively, or even simultaneously. These may be automatically linked to form a chase, or manually triggered. A cuelist is run from a master.

D

default The value for a setting that Wholehog OS uses if you don't give it a value. For example, there is a default fade time used when you record a cue without specifying a fade time. You can specify the defaults to be used in many cases.

default value A parameter value which has not been adjusted by the user. This value is assigned by the fixture's Library, and may not always be zero. For example, the default value of Shutter Open/Strobe Off may be Open.
See Also touched value, tracking.

delay time The time the console waits before starting a cue's crossfade.
See Also wait time, crossfade, path.

desk See console.

desk channel Single conventional lights that only have intensity control via a dimmer are defined as desk channels by Wholehog OS. By contrast, automated lights are referred to as fixtures.
See Also fixture.

desktop view An user-defined arrangement of windows that can be accessed with a single button press from the View Toolbar.

DHCP Dynamic Host Configuration Protocol is a way for a computer to ask a master computer on a network to assign it an IP address when it connects. Many existing networks are configured this way, and Wholehog OS supports this system. You should talk to the administrator of the network you want to connect to to find out more.
See Also Ethernet, IP address.

diffusion A parameter that effects the beam quality, allowing a softening or stretching of the beam. Not to be confused with beam focus where the beam edge is adjusted.

dimmer curve See conversion curve.

directory A window which displays palettes, scenes or groups.
See Also palette.

DMX Short for DMX 512, DMX is the communications protocol most commonly used to connect lighting consoles to fixtures and dimmers.
DMX address A number between 1 and 512 that identifies a controllable parameter of a fixture. Each fixture or group of dimmers has a ‘start address’, the first of the range of DMX addresses that it uses.

DMX universe A single DMX output with 512 channels is known as one DMX universe. A Wholehog network may support many universes each with fixture addresses between 1 and 512.
See Also DMX Processor.

DMX Processor A nineteen inch, rack mounted network node that distributes 1 or 4 DMX outputs. There may be many DMX Processors within a lighting control network.
See Also node.

down time See out time.

E

editor A window for editing the contents of cues, scenes, groups or palettes.
See Also Programmer.

effects engine The Wholehog OS effects engine provides the opportunity to create movement sequences. The engine contains library shapes, whilst allowing for custom effects to be created.

encoder wheel See Parameter Wheel.

Ethernet A defined way of connecting computer equipment together. It comes in a variety of flavours.
See Also 10 Base-T, 100 Base-T, IP address, hub.

F

fade time Time in which fixtures crossfade between the parameter levels of two cues - one incoming, one outgoing.
See Also split fade, in time, out time.

fanning A way of quickly assigning fixture parameters to an evenly spaced range of values. For example, you could use fanning to assign the intensity of 10 fixtures to 10%, 20% ... 90%, 100% in a single operation.
See Also buddying.

fixture Lantern, instrument, lamp or moving light unit. In this manual the word fixture is used to refer to automated lights, as opposed to ‘conventionals’ which are usually controlled by dimmers and assigned to Wholehog OS as desk channels.

fixture library A data file that contains details of a fixture's parameters, required so that Wholehog OS ‘understands’ how the fixture works and what it can do. The fixture libraries are an important part of making the console's abstraction layer work.
See Also abstraction layer.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>focus</td>
<td>The position of the light beam of a fixture within space, or the surface it hits. Not to be confused with the beam edge quality.</td>
</tr>
<tr>
<td>function</td>
<td>See parameter.</td>
</tr>
<tr>
<td>gamut</td>
<td>The range of colours that a fixture is capable of producing. Each fixture type has its own gamut.</td>
</tr>
<tr>
<td>gang</td>
<td>See buddying.</td>
</tr>
<tr>
<td>gobo</td>
<td>Image placed within the optical system of the fixture, projected onto lit object. Also known as a pattern.</td>
</tr>
<tr>
<td>graphical user interface</td>
<td>A way of displaying information, and allowing the user to work with it, in a visual form. Most personal computers use a GUI with windows, buttons and a pointer. See Also command line.</td>
</tr>
<tr>
<td>group</td>
<td>A way of storing and recalling a selection of fixtures quickly.</td>
</tr>
<tr>
<td>GUI</td>
<td>See graphical user interface.</td>
</tr>
<tr>
<td>hard command</td>
<td>See hard value.</td>
</tr>
<tr>
<td>hard value</td>
<td>The output of a master running a cuelist is a mix of hard and soft parameter values. Hard values are those that are in the current cue, while soft values are those that have tracked through from previous cues. See Also tracking.</td>
</tr>
<tr>
<td>HTP</td>
<td>Highest Takes Precedence. In this system of operation, the highest value assigned for a parameter is the one that applies. A fixture can be in cues on two masters, and the highest level of the two will be the one seen. HTP is only relevant to intensity parameters where the idea of ‘highest’ has meaning. See Also LTP.</td>
</tr>
<tr>
<td>hub</td>
<td>When you want to connect more than two Wholehog components together, then you need a special piece of equipment to allow them to interconnect called an Ethernet Hub or Ethernet Switch. Note that when connecting a Wholehog component to a hub or switch you should use a normal Ethernet cable and not a cross-over cable like the one supplied. See Also Ethernet.</td>
</tr>
<tr>
<td>hue</td>
<td>The colour (pigment) element of colour notation. See Also saturation, intensity.</td>
</tr>
</tbody>
</table>
I

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-Wheel</td>
<td>The I-Wheel on the right hand side of the console is used to control fixture intensity.</td>
</tr>
<tr>
<td>in time</td>
<td>The time of the fade up of the incoming cue during a crossfade. All fixtures that are increasing in intensity will come up over this time. See Also split fade, path, fade time.</td>
</tr>
<tr>
<td>inhibitive master</td>
<td>A master that sets a maximum level on a group of fixtures. If the master is at 80%, then the fixtures will never come above 80% in the console's output.</td>
</tr>
<tr>
<td>instrument</td>
<td>See fixture.</td>
</tr>
<tr>
<td>intelligent light</td>
<td>See fixture.</td>
</tr>
<tr>
<td>intensity</td>
<td>Fixture brightness, expressed as a percentage. Also part of the HSB method of defining colour. See Also hue, saturation.</td>
</tr>
<tr>
<td>IP address</td>
<td>On an Ethernet network, each Wholehog component has an address, called an IP address, used to identify it. You can usually use the default addresses, but if you are connecting to an existing network you may need to specify a different address, according to how your network is configured. See Also Ethernet.</td>
</tr>
<tr>
<td>iris</td>
<td>Variable mask placed within the optical system of the fixture, allowing the conical beam size to be manipulated. Not to be confused with zoom. See Also zoom.</td>
</tr>
</tbody>
</table>

K

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td>A physical button on the console's front panel. This manual reserves the word ‘button’ for buttons that appear on screen.</td>
</tr>
<tr>
<td>knocking out</td>
<td>See knockout.</td>
</tr>
<tr>
<td>knockout</td>
<td>Knocking out is the process of removing fixtures from the Programmer window, so that they will not be recorded into cues.</td>
</tr>
</tbody>
</table>

L

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>See intensity.</td>
</tr>
<tr>
<td>look</td>
<td>A stage lighting ‘picture’, usually created in the Programmer. Once you have created a look you may record it as a scene or cue. See Also cue, scene.</td>
</tr>
<tr>
<td>LTP</td>
<td>Latest Takes Precedence. In this system of operation, the most recent instruction to assign the value of a parameter is the one that applies. A</td>
</tr>
</tbody>
</table>
Glossary

cue run on one master can take control of fixtures set by a cue in another master.
See Also *HTP*.

luminaire

See *fixture*.

M

maintain state

The Wholehog OS's Maintain State feature eliminates the common problem with tracking, where playing back cues out of order results in incorrect lighting states on stage.
See Also *tracking*.

mask

A method of selecting information that is specific to a palette, fixture, cue, scene or group, when recording, making selections, editing or programming. Typical masks are the parameter masks: intensity, position, colour and beam.

master

A master comprises of Go, Pause, Flash and Choose buttons, as well as a fader. One cuelist maybe run upon one master at one time. Cuelists need not be permanently stored on specific masters and may reside in the cuelist directory.
See Also *cuelist*.

memory

See *cue*.

MIDI

Musical Instrument Digital Interface. Allows communication of musical notes, programmes and timing data between electronic instruments and other devices such as lighting consoles.
See Also *timecode*.

MIDI Show Control

Subset of MIDI used in the entertainment industry for integrated control of lighting, sound and stage automation.

MIDI/Timecode Processor

MIDI/Timecode Processors are used to bring MIDI and timecode into or out of the network. They support MIDI, MIDI Show Control, MIDI Timecode, Linear Timecode, and Video Timecode.
See Also *timecode*.

modifier

A key that is used in conjunction with other keys or buttons, to change the effect that it has. For example, the Pig key.
See Also *Pig key*.

moving light

See *fixture*.

multicast

A network protocol or language that computers use to talk to each other over Ethernet. Wholehog OS uses this standard protocol, which means that it can safely be connected to other networks of computers and will not interfere with them. For show-critical situations you should run Wholehog system on its own independent network.
See Also *Ethernet*.
network processor A network device such as a DMX Processor or MIDI/Timecode Processor that handles data coming into or going out of the Wholehog network. See Also DMX Processor, MIDI/Timecode Processor.

node Network nodes are items of equipment connected to the network. Consoles, DMX Processors and Hog 3PC systems are all nodes. See Also DMX Processor, console.

on stage The output of the console; more specifically, the fixtures that have non-zero intensities.

out time The time of the fade of the outgoing cue during a crossfade. All fixtures that are decreasing in intensity will go down over this time. See Also split fade, path, fade time.

page A preset arrangement of cuelists residing on the masters. Pages can be changed allowing masters to be used by many cuelists.

palette A stored parameter setting, such as position, for one or more fixtures. Fixtures of different make or type may share the same palette. See Also directory.

pan One of the parameters, together with tilt, that determines the direction that the fixture points in.

parameter A controllable property of the light produced by a fixture. For example a fresnel has one attribute: intensity. Moving fixtures have pan and tilt parameters and perhaps colour, beam shape, and so on.

Parameter Wheel A wheel that facilitates the control of fixture parameters. Parameter Wheels are fixture sensitive: once loaded from the fixture library, parameters are allocated logically to the wheels.

patch The assignment of DMX addresses to fixtures. See Also DMX.

patch point The set of information that defines where a fixture is patched, including DMX address, DMX universe, and DMX Processor. Some fixtures have multiple patch points. See Also DMX, DMX address, universe, DMX Processor.

path A way of defining the way that a parameter changes during a fade. You could assign a path that makes the fixture parameter snap to its final value at the start of the fade, for example. Paths should not be confused with conversion curves; paths are the properties of a cue, while a conversion curves is the property of a fixture. See Also fade time, conversion curve.
pattern See gobo.
peripherals See accessories.
Pig key The Flying Pig symbol button is a modifier key, and may be used in conjunction with other keys to alter their function.
pile on A system where new objects are added to previous ones, rather than replacing them. Wholehog OS can be assigned to pile on desktop views, so that new windows are opened but ones from the previous view are not closed.
See Also desktop view.
playback See master.
playback wing A Wholehog accessory that increases the number of masters available.
See Also master.
plotting The process of recording cues for playing back latter.
See Also Programmer.
point number A number with a decimal point. Cues are initially given whole numbers, but a point number in order can be used to insert a cue: cue 2.5 between 2 and 3 for example. Such a cue is known as a point cue.
port number On a computer network, the port number defines a particular type of network traffic. In the case of a Wholehog network, each show running on the network has its own port number, so that a console can identify and connect to a particular show.
position The position of the light beam of a fixture within space, or on the surface it hits. With most fixtures, the position is determined by the pan and tilt parameters.
preset See palette.
profile See conversion curve.
Programmer A window where cue and scene data is created or edited. The Programmer takes priority over all commands sent to a fixture elsewhere in the console.
rate See fade time.
Rate Wheel The centre-sprung wheel on the left hand side of the console used for adjusting fade rates.
remainder dim Used after selecting a fixture or group of fixtures, setting all remaining fixtures to a zero intensity level.
saturation The amount of pigment in colour notation.
See Also hue, intensity.

scene
A single stage look that does not have the attributes of a cue and is not part of a cuelist. A scene can be loaded onto a master, or triggered by a go button.
See Also cue, cuelist.

selection order
The order in which the user selects fixtures into the Programmer or editor. Wholehog OS remembers this and can apply fanning, or effects according to a fixture's place in the sequence. The sequence is recorded as part of groups and palettes.
See Also group, palette.

server
See show server.

shape generator
See effects engine.

show server
The Wholehog console that ‘owns’ a show. Other consoles may join the show, but the original console that created the show will remain the show server.

slot
A discrete step in a parameter's range, such as the position of a gobo wheel.

SMPTE
A form of time code that can be used to synchronise the operation of various controllers, for example synchronising lighting to video playback.

Soft Key
The Soft Keys are the row of keys above and below the touchscreens. They mimic the function of toolbars docked along the edge of the screens.
See Also toolbar.

soft parameter value
See tracked value.

speed
See fade time.

split fade
A crossfade where the incoming and outgoing cues have different times, causing an imbalanced or dipped fade profile.
See Also crossfade, in time, out time.

spreadsheet
A way of displaying values in a grid. Wholehog OS editor windows use a spreadsheet to display parameter values.

start up
The process that the console goes through when it is first powered on.

submaster
See scene.

switch
See hub.

system zone
See hub.

TCP/IP
A network protocol or language that computers use to talk to each other over Ethernet. Wholehog OS uses this standard protocol, which means that it can safely be connected to other networks of computers and will...
not interfere with them. For show-critical situations you should run the Wholehog system on its own independent network.
See Also Ethernet.

toolbar
A long, thin window with a series of buttons, that generally sits along the top or bottom edge of the screens. When in this position, a toolbar is said to be ‘docked’.
See Also Soft Key.

touch screens
The two LCD screens on the console, which display and allow the user to select information from them.

touched value
A parameter value that has been assigned or edited by the user. Values which are not touched will remain at their default value.
See Also default value, tracking.

tilt
One of the parameters, together with pan, that determines the direction that the fixture points in.

timecode
A method of synchronising the console with other playback sources, such as music, video or film. Wholehog OS supports MIDI, Linear Timecode and Video Timecode.
See Also MIDI, SMPTE, video timecode.

timing
Cues have several values that control timing: fade, wait, delay and path.
See Also fade time, wait time, delay time, path.

tracked value
The output of a master running a cuelist is a mix of hard and tracked parameter values. Hard values are those that are in the current cue, while tracked values are those that have tracked through from previous cues.
See Also tracking.

tracking
A method of dealing with cuelists that does not record information in a cue unless it is a change from the previous cue. This allows multiple cuelists to be running at the same time without them interfering with each other.
See Also hard value, tracked value, touched value, default value.

U

UDP
A network protocol or language that computers use to talk to each other over Ethernet. Wholehog OS uses this standard protocol, which means that it can safely be connected to other networks of computers and will not interfere with them. For show-critical situations you should run the Wholehog system on its own independent network.
See Also Ethernet.

universe
See DMX universe.

up time
See in time.
USB	Universal Serial Bus: a means of connecting computer peripherals such as keyboards and mice. Wholehog consoles also use USB to connect expansion wings. See Also playback wing.	
V	video timecode	A form of timecode that is embedded in a video signal. See Also timecode.
V	virtual master	A means of running a cuelist without having it attached to a physical master on the console. See Also cuelist, master.
V	visualiser	A real-time computer rendering package, that allows the Programmer to create their lighting virtually before getting to the venue.
W	wait time	The time between the previous cue being triggered and the current one being run automatically. Not to be confused with the delay time. See Also delay time.
W	white point	A definition of white light used by Wholehog OS's colour calibration system to match the colour of fixtures with different lamp types, such as tungsten and arc.
W	widget	A device that allows the connection of accessories to the console or PC via USB. Such accessories may range from input control panels to DMX outputs. See Also universe, USB.
Z	zip disk	Zip disks are like a floppy disk, but with a much higher capacity. They can be used to store, back up, and transfer show files.
Z	zip drive	The Wholehog 3 console has a drive to read and write zip disks. You can connect an external zip drive to the Hog iPC and Road Hog consoles, and to a PC running Hog 3PC via USB.
Z	zoom	Allows the size of beam/image to be adjusted whilst maintaining its focus. See Also iris.
Symbols

@ key, 161

A
abstraction, 13
Action of go when looping, 273
Active, 16
aggregation
 collapsing sections, 107
 jumping between sections, 107
 section priority, 107
aggregation (spreadsheets), 106
All button, 157
Allow Refs button
 when recording palettes, 196
Apply Patch, 140
arrow keys (see keys, cursor)
Art-Net, 88
 IP address, 89
 using a DMX Processor 2000, 92
Assert, 276, 295
Assert Time, 276, 296
audio (see sound)
Auto Launch, 119
Auto Palettes, 137
auto release, 269
Auto Update, 204

B
back, 65
Back button, 217
Back key, 158
Back Time, 272
backlight off time
 console touch screens, 63
 DMX Processors, 85
backup, 62, 124
 on Hog 3PC, 357
Backwards button, 218
ball mode, 65
battery, 62
Beacon, 93
beam
 modifying values, 163, 164
blackout key, 311
blind mode, 206
blocking, 221
cues, 7
 removing blocking, 221
boot server, 73
brightness
 deskslits, 64
touch screens, 62
buddying, with fanning, 176
bugs
 reporting, 423
Burning a CD, 124
button, 4

C
calibration
 colour, 15, 167
calibration of touch screens, 62
Capture Activity, 306
CD-ROM
 using with timecode, 329
CD-ROM drive, 119, 121
 audio playback, 319
 creating a CD, 124
 ejecting a disk, 123
changing the current show, 122
chases
 configuring playback controls, 313
 setting rate with Tap Sync, 289
 using cue list as, 287
Choose key, 265, 266, 291
cleaning
 faders, 428
 front panel, 415
touch screens, 415
clock
 display format, 68
Clock Toolbar, 241
clock triggers, 240
clock, console, 68, 117
Clone, 16
cloning patching, 145, 146
CMY, 14
CMY colour, 165
Collapse Aggregated Sections, 107
colour
 modifying values, 163, 164
colour calibration, 14, 167
Colour Coding, 110
colour matching, 14, 167
Index

colour models, 14, 165
Colour Picker, 15, 167
colour scheme, 62
colour temperature, 15
command line, 5, 115
 syntax, 116
comment macro (see macro)
compact mode (spreadsheets), 105
console, 367
 (see also Road Hog)
 (see also Road Hog Full Boar)
 clean software install, 413
 reporting problems, 423
 technical specification, 431
 updating software, 413
console failover, 78
console tracking, 79
Control Panel, 61
 Displays, 63
 Keyboard, 67, 68
 Network, 119
 Printers, 68
 System Info, 423
 Time and Date, 68
copy, 108
 scene master, 291
copying
 cuelists, 247
 cuelists to pages, 307
 cues, 214
effects, 264
fixture parameter values, 171
fixtures, 135
groups, 184
inhibitive masters to pages, 307
pages, 308
palettes, 191
parameter values into an editor, 202
scenes, 251
scenes to pages, 307
shows, 122
creating
 cuelists, 246
effects, 257
folders, 123
pages, 303
creation date, 122
crossfade
 manual, 286
Cue Only, 289

Cuelist Directory, 108
cuelists, 8, 245
 configuring playback controls, 313
 copying, 247
 copying to pages, 307
 creating, 246
 default rate, 272
 deleting, 246
 feedback, 282
 IPCB fader mode, 287
 moving, 247
 moving to pages, 308
 multiple, 274
 naming, 246
 options, 271
 ordering of cues, 242
 pages, 303
 playback, 265
 rate override, 285, 286
 removing from pages, 308
 renumbering, 215
 status, 280
 using as a chase, 287
 wrapping, 272
cues
 clock triggers, 240
 copying, 214
 deleting, 214
 editing contents, 216
 editing parameter timings, 232
 editing times, 230
 follow-on, 238
 learn timing, 239
 linking, 242
 looping, 242
 manual, 238
 moving, 215
 naming, 212
 numbering, 212
 ordering, 242
 parts, 9
 paths, 230
 playing out of sequence, 8
 recording, 211
 removing parameter values, 213
 with a delay time, 229
 with a fade time, 228
 with selected fixtures only, 213
 with state, 221
 simultaneous, 8
Index

timing, 227
tracking backwards when recording, 218
tracking forwards when deleting, 220
tracking forwards when inserting, 219
triggering, 238
triggering from timecode, 331
wait time, 238
cursor keys, 133
cut, 108
date
creation, of a show file, 122
format, 68
setting the console clock, 68
default printer, 70
default value of parameters, 153
Delay button, 113
delay time, 227, 229
fanned, 237
deleting
cuelists, 246
cues, 214
desktop views, 104
effects, 264
fixtures from groups, 183
groups, 183
link cues, 242
pages, 309
palettes, 191
scenes, 250
shows, 122
deselecting fixtures, 159
desk channels, 5, 133
desklights, 64
on Road Hog, 367
desktop views, 102
deleting, 104
naming, 102
options, 103
recalling, 103
recording, 102
DHCP, 84
DHCP server, 73, 74
diagrams
front panel, 441
direct palettes, 108, 197
directories, 108
automatic naming of items, 110
colour coding items, 111
default item names, 110
directory (see folders)
discrete parameter values (see slots)
displays, 62
displays, external, 63
DMX, 11
DMX address, 13, 140
DMX Processor, 11, 71
adding for patching, 139
backlight off time, 85
cloning, 146
IP address, 84
locking the controls, 85
mains power, 82
net number, 84
port number, 84
removing, 139
resetting, 86
selecting when patching, 140
status, 86
updating software and firmware, 414
using, 82
watchdog, 86
DMX Processor 2000
using in Art-Net mode, 92
DMX Processor 8000
expanding XLR outputs, 86
installation, 416
maintenance, 417
reset options, 414
technical specification, 432
DMX universe, 140
DMX widgets
configuring on Hog 3PC, 359
installation with Hog 3PC, 352
E
Edit button, 114
and the command line, 115
Edit Fixtures window, 152
editing
cue contents, 216
cue timings, 230
effects, 257, 263
group contents, 183
palette contents, 189
parameter timings in cues, 232
scene contents, 251
Editor Toolbar, 114
Editor Values Toolbar, 114
editors, 113
 bringing in values from onstage, 199
 clearing the contents of, 177
 locking, 114
 which is the current editor?, 117
Effect Directory, 108
effect time
 overriding during playback, 286
effects, 253
 can-can, 253
 circle, 253
 copying, 264
 deleting, 264
 editing, 257, 263
 engine, 257
 fanning, 257
 fly in, 253
 iris chase, 253
 length, 254
 moving, 264
 n-shot, 254
 naming, 262
 offset, 254
 palettes, 262
 predefined, 256
 rate, 254
 simultaneous, 13
 size, 254
 square, 253
 tables, 253
 timing, 260
 using in programming, 263
embedded palettes, 187
Enable Aggregation, 106
Enable Jump Toolbar, 107
Enable Timecode, 331
dependos
 of parameter values, 164
ESP Vision
 visualiser software, 375
Ethernet, 71
Even button, 158
Expander, 86
expansion wing
 adding, 95
 configuring, 95
 using, 96
Export
preferences, 125
external
 displays, 63
 keyboard, 67
 mouse, 67
 touch screens, 64
Extract, 16

F
Fade button, 113
Fade Changes, 206
fade time, 227, 228
 default, 228
 overriding during playback, 285
 overriding during scene playback, 300
 with masks, 229
fader, 12
 go off zero, 273
 release at zero, 273
faders
 cleaning, 428
 replacing, 427
 virtual, 94
fanning, 173, 237
 effects, 257
 Fanning Toolbar, 175
 from the command line, 174
 in spreadsheet view, 174
 multipart, 175
 options, 175
 with groupings, 176
 with the Fan key, 173
Fanning Toolbar, 159
feedback
 cuelist, 282
File Browser, 122
files
 sharing over a network, 81
fine control of parameter values, 169
firewalls, 73
 with Hog 3PC, 351
fixture builder, 389
fixture library, 119
fixture masters, 12
Fixture Patch window, 140
Fixture Schedule window, 133
fixture types, updating, 126
Fixture window, 133, 149
fixtures, 5
adding, 133
changing type, 135
cloning patching, 145, 146
configuring, 148
copying, 135
copying parameter values, 171
deselecting, 159
duplicating, 135
generic, 133
interchangeable, 14
inverting pan and tilt, 151
inverting the selection, 157
modes, 133
notes, 150
patch notes, 150
patching, 139
proportional patch, 151
protocol, 148
removing, 137
removing from an editor, 178
replicating, 135
reselecting, 159
select all, 157
selecting, 155
selecting from what is onstage, 199
selection order, 159
sub selections, 158
swapping axes, 151
the fixture builder, 389
timing, 232
type, 148
unpatching, 147
user number, 149

flash button
flash level, 274
go on flash, 274
latching, 274
release on off, 274
solo, 274
Flash key, 266
flip, 65, 162
folders
creating, 123
Follow Chosen, 282
Follow Cue, 282
Follow Current, 217
Follow Next, 217
follow-on, 238
follow-on time, 227
Forward button, 219, 220
front panel, 11
 cleaning, 415
front panel diagrams, 441

G
generic fixtures, 133
global
 palettes, 192
Global button
 when recording palettes, 192
glossary, 4, 443
Go key, 266
Gobo
 reversing rotation, 164
Goto key, 267
Grand Master, 311
 loosing, 311
graphical user interface, 5, 97, 357
Group Directory, 108
groupings (see fanning)
groups, 181
copying, 184
 creating automatically, 137
deleting, 183
 editing contents, 183
moving, 184
 naming, 182
recording, 181
 removing fixtures, 183
 using, 182
Guard button, 108, 113, 278, 298

H
halt, 238
 action of halt when halted, 273
Halt/Back key, 266
hard command (see hard value)
hard values, 6, 7, 169, 221
headphones, 319
help
 full tutorial, 23
 getting help, 421
 getting started, 3
 key to this manual, 4
 quick tutorial, 19
Help button, 108, 113
highlight, 203
 customising, 203
 highlight palette, 108
Hog 3PC
backing up, 357
configuring computer, 351
configuring widgets, 359
creating show files, 356
firewalls, 351
installation, 347
installing hardware, 352
interface, 357
MIDI configuration, 362
network, 351
patching, 359
programmer wing, 361
quitting, 355
removing software, 351
starting, 354
system requirements, 347
transferring show files, 356
upgrading widgets, 363
virtual faders, 361
visualiser support, 362
widgets, 363
windows, 357, 358
Hog-Net, 74
Hold Over If Active, 304
HSI, 14
HTP, 9, 274, 275, 294
scene, 295
hue, 14
Hue, 165

I
I-Wheel, 12, 161
sensitivity, 66
Ignore MSC In, 323
Import
preferences, 125
inhibit, 301
inhibitive masters, 292, 312
copying to pages, 307
moving to pages, 308
removing from pages, 308
Insert button
with cuelists, 248
with cues, 212
with groups, 184
with palettes, 198
with scenes, 252
installation

DMX Processor 8000, 416
installing software, 413
intensity, 14
modifying values, 161
interface (see graphical user interface)
inverting pan and tilt, 151
inverting parameter values, 164
inverting the fixture selection, 157
IP address, 72, 74
DMX Processor, 84
with Art-Net, 89
IPCB fader mode, 301
IPCB fader mode (with cuelists), 287

J
jump points
in timecode, 333
Jump Toolbar, 107, 114

K
key, 4
double press time, 67
repeat delay, 67
repeat period, 67
keyboard
external, 67
on-screen, 68
shortcuts, 407
keys
@, 161
Back, 158, 217
blackout, 311
Blind, 206
Choose, 265, 266, 291
cursor, 133
Effect, 257
Fan, 173
Flash, 266
Go, 266
Goto, 267
Halt/Back, 266
Highlight, 203
Live, 199, 201
meaning of LEDs, 280
modifier, 98
new, 12
Next, 158, 217
Next Page, 304
Nudge Up and Nudge Down, 161
Open, 99
Pig, 98, 170, 207, 409 (see Pig key)
Release, 268, 292
Set, 68
Skip Back, 267
Skip Forward, 267
soft (see Soft Keys)
Time, 233
Trackball, 65
Update, 114, 204
killing processes, 421
Knockout button, 177

L
Launch Existing Show, 119
 automatically, 119
launch macros, 120
Launch New Show, 119
learn timing, 239
Leave In Background, 304
 matching master levels, 305
Levels View window, 284
library
 choosing, 119
 merged status, 122
 merging, 126
lights
 on Road Hog, 367
linear timecode (see timecode)
 gain, 330
Linear Timecode USB Widget, 329
link cues, 242
links (see link cues)
Live key, 199, 201
Load, 16
logging off, 121
loops, 242
 action of Go key, 242
 tracking through, 243
Lower Priority, 107
lowlight, 204
lowlight palette, 108
LTP, 9, 274, 275, 294
 scene, 295

M
macro
 command syntax, 335
 when changing pages, 306
when cues run, 289
 when launching a show, 120
mains power, 62
maintain state, 8, 243
maintenance, 427
 DMX Processor 8000, 417
 front panel, 415
manual
 crossfade, 286
manual cues, 238
mark cues, 10, 223
mask
 syntax, 116
 when recording effect palettes, 262
 when recording palettes, 194
masking
 when recording fade times, 229
masters, 8, 12
 fixture, 12
 Grand Master, 311
 inhibitive, 292, 312
 pages, 303
 physical, 265, 291
 virtual, 12, 265, 278, 291, 298
 which is the currently chosen master?, 117
Matching Levels, 305, 311
Merge button
 with cuelists, 248
 with cues, 212
 with groups, 184
 with palettes, 198
 with scenes, 252
merging shows, 126
MIDI, 319
 MIDI notes, 323
 on Hog 3PC, 362
 on Road Hog, 368
 show control, 321
 using with timecode, 329
MIDI show control, 323
MIDI/Timecode Processor, 71
 mains power, 82
 using, 82
 using with timecode, 329
modifier keys, 98
monitor (see display)
mouse, 67
move
 scene master, 291
move in black (mark cues), 10, 223
moving
cuelists, 247
cuelists to pages, 308
cues, 215
effects, 264
groups, 184
inhibitive masters to pages, 308
pages, 308
palettes, 191
scenes, 251
scenes to pages, 308
shows, 122
MSC, 321
multiple
patch points, 143
shows on the network, 11, 80
multiple consoles, 76

N
naming
cuelists, 246
cues, 212
desktop views, 102
effects, 262
groups, 182
palettes, 188
scenes, 250
shows, 122
slots, 154
the show, 119
net number, 76, 84, 139
network, 71, 74
 Boot server, 73
 client, 77
 connecting to an existing, 80
 console failover, 78
 console tracking, 79
 DHCP server, 73, 74
 DMX Processor status, 86
 DMX Processors, 73
 file sharing, 81
 firewalls, 73
 IOPs, 73
 IP address, 74
 multiple consoles, 76
 net number, 76
 port number, 75, 80
 sending timecode over, 329
 show server, 77

using Art-Net, 88
 with Hog 3PC, 351
network adapter, 71
 IP address, 72
network processor, 71
 mains power, 82
 using, 82
networking, 11
new
 playback features, 12
 show, 119
new show, starting, 122
next, 65
Next button, 217
Next key, 158
Next Page key, 304
Nudge Up and Nudge Down keys, 161
numbering
cues, 212
(see also renumbering)

O
Odd button, 158
on-screen keyboard, 68
Open key, 99
ortho mode, 65
Output window, 283

P
pages, 8, 303
 changing, 304
 clearing, 308
 copying, 308
 copying cuelists to, 307
 copying inhibitive masters to, 307
 copying scenes to, 307
 creating, 303
 deleting, 309
 moving, 308
 moving cuelists to, 308
 moving inhibitive masters to, 308
 moving scenes to, 308
 removing cuelists from, 308
 removing inhibitive masters from, 308
 removing scenes from, 308
 template, 309
 which is the current page?, 117
Palette Directory, 108
palettes, 6, 108, 187
automatic naming, 110
copying, 191
creating automatically, 137
default names, 110
deleting, 191
direct, 197
editing contents, 189
effect, 262
effects, 13
global, 192
moving, 191
naming, 188
recording, 188
recording with masking, 194
recording with timings, 196
reference, 196
showing references to in editors, 113
types of content, 192
using in programming, 189

pan (see position)
parameter, 5, 13
timing, 9
parameter defaults, 268, 292
parameter types, 160
removing from an editor, 178
parameter wheel
sensitivity, 66
parameter wheels, 162, 163
parameters
default value, 153
default values - restoring, 173
making non-releasable, 154
minimum and maximum values, 153
modifying values, 160
naming slot values, 154
offset value, 154
removing value from an editor, 178
separating, 178
timing, 232
Parked Output window, 207
parking, 207
paste, 108
patch
proportional, 151
patch points, multiple, 143
patching, 139
adding DMX Processors, 139
cloning, 145, 146
finding unused addresses, 143
fixtures to multiple addresses, 142
Hog 3PC, 359
multiple patch points, 143
removing DMX Processors, 139
Road Hog, 367
several fixtures at once, 141
unpatching, 147
Path button, 113
paths, 227, 230
Per Fixture button
when recording palettes, 192
Per Fixture Type button
when recording palettes, 192
Persist on Override, 277, 297
Pig key, 98, 170
for copy and paste, 108
for fine control of parameter values, 169
list of commands, 409
to unpark parameters, 207
when using desktop views, 103
when using directories, 108
with the I-Wheel, 161
pile-add effects, 278
pile-add Effects, 297
pinning windows, 100
playback, 8
configuring controls, 313
cuelists, 265
priority, 274
scenes, 291
using pages, 303
Playback
Priority, 294
Playback Bar, 280, 300, 305, 311
displaying, 93
Playback Priority, 276
scene, 296
playback wing, 281
adding, 93
removing, 94
playbacks, 12
point cues, 212
pointer mode (see Trackball)
port number, 75, 80, 119
DMX Processor, 84
position
flip, 162
modifying values, 162
position mode (see Trackball)
power, 62
Preferences, 61
removing parameter values, 213
 with a delay time, 229
 with a fade time, 228
 with selected fixtures only, 213
 with state, 221
desktop views, 102
direct palettes, 197
effect palettes, 262
effects, 257
 groups, 181
 link cues, 242
 pages, 303
 palettes, 188
 parameter timings, 232
 scenes, 249
reference palettes, 196
Release
 scene, 292
Release All, 304
release cue, 269
Release key, 268
Release on Other Go, 270
 scene, 294
Release Time, 269
 scene, 293
releasing parameters, 154
Rem Dim button, 162
Remember Fader Values, 304
renaming
 shows, 122
renumbering
 cuelists, 215
Reorder button, 159
repeat, with fanning, 176
Replace button
 with cuelists, 248
 with cues, 212
 with groups, 184
 with palettes, 198
 with scenes, 252
replacing
 faders, 427
touch screens, 427
Trackball, 429
replicating fixtures, 135
reselecting fixtures, 159
restarting, 121
 processes, 421
Restore Activity, 306
restoring
system files on Road Hog, 369
restoring default parameter values, 173
Reverse button, 159
RGB, 14
RGB colour, 165
Road Hog, 367
lights, 367
MIDI, 368
patching, 367
restoring system files, 369
starting up, 368
timecode, 368
Trackball, 367
Road Hog Full Boar, 367

S
safety information, 435
saturation, 14
Saturation, 165
Scene Directory, 108
scene master
copy, 291
move, 291
scene rate
overriding during scene playback, 300
scenes, 249
configuring playback controls, 313
copying, 251
copying to pages, 307
deleting, 250
editing contents, 251
masters, 12
moving, 251
moving to pages, 308
multiple, 294
naming, 250
options toolbar, 294
playback, 291
recording, 249
releasing from master, 292
removing from pages, 308
status, 300
timing, 251
scrolling window contents, 101
select all, 65, 157
Select Toolbar, 158
selecting fixtures, 155
from what is onstage, 199
selection order, the, 159, 181
separating parameters, 178
servicing, 427
set, 65
Set key, the, 68
show
connecting to a running, 119
launch automatically, 119
launching a new, 119
launching an existing, 119
name, 119
show control
MIDI, 323
Show Manager, 121
Show Palettes button, 113
show server, 77, 119
shows
backing up, 124
changing current, 122
copying, 122
creation date, 122
deleting, 122
managing, 121
merging, 126
moving, 122
multiple, on the network, 11, 80
naming, 122
renaming, 122
starting new, 122
updating fixture types, 126
shuffle, 65
Shuffle button, 159
shutting down, 121
Hog 3PC, 355
simultaneous
cues, 8
effects, 13
Skip Back key, 267
Skip Forward key, 267
slots, 164
naming, 154
SMPTE (see timecode)
Soft Keys, 12, 97
soft patching, 142
software
beta, 425
clean install, 413
updating, 413
version numbering, 425
sound, 319
Source button, 113
specifications, 431
split times, 229
spreadsheets, 104
aggregation, 106
compact mode, 105
Start Window, the, 118
starting a new show, 122
starting up, 118
Road Hog, 368
startup macros, 120
State button, 221
Status Bar, 117
sub selections of fixtures, 158
Suck button, 200
Super Widget
 expanding DMX Processor 8000, 86
support, 421
Suppress MSC Out, 323
swap to screen, 65
swapping axes, 151
switching off the console (see shutting down)
symbols, 4
syntax, 116

T
tables
 effects, 253
Tap Sync, 289
technical specifications, 431
technical support, 421
template page, 309
template pages, 108
theatre
 lighting consoles, 5, 9
tilt (see position)
time
 format, 68
 setting the console clock, 68
timecode, 238, 319
 editing values, 332
 jump points, 333
 on Road Hog, 368
 options, 330
 regenerating, 330
 simulating, 333
 triggering cues, 331
 viewing, 332
timing, 227
 effects, 260
 fanned, 237
 for individual parameters, 9
 scenes, 251
toolbars, 97
 CD Control Toolbar, 320
clock, 241
 Editor Toolbar, 114
 Editor Values Toolbar, 114
 Fanning Toolbar, 159, 175
 Jump Toolbar, 114
Playback Bar, 280, 300, 305, 311
Record Options Toolbar, 195
 with cuelists, 248
 with cues, 212
 with effect palettes, 262
 with groups, 184
 with palettes, 198
 with scenes, 252
Select Toolbar, 158
Slot Toolbar, 154
Status Bar, 117
View Toolbar, 102
Window Control Toolbar, 100
touch screens, 11, 12, 97
 backlight off time, 63
 brightness, 62
 cleaning, 415
 disabling, 63
 external, 64
 maintenance, 415
 replacing, 427
touched values, 212
touching parameters, 169
 with Live, 201
 with Pig, 170
Touchscreen Monitor
 technical specification, 432
track backwards, 218
track forwards, 219, 220
track through, 7, 169
Track Through Loops, 289
Trackball, 12, 151, 162
 keys, 65
 modes, 64
 replacing, 429
Road Hog, 367
sensitivity, 66
 using for pan and tilt, 162
 which is the current mode?, 117
Index

tracked value, 6
tracking, 6, 8, 169, 178, 221
 Cue Only, 289
 mark cues, 10, 223
 stopping values tracking forwards, 219, 220
 through loops, 243
 Track Through Loops, 289
 tracking backwards, 218
Trigger Forwards Only, 331
trigger macro, 289
triggers, 238
troubleshooting, 421
 Hog 3PC hardware installation, 353
turning off the console (see shutting down)
type
 of fixtures, 148

U
Unblock button, 221
unblocking, 221
undo, 98
units
 real world, 13
universe
 cloning, 145
 unpatching, 148
unpatching, 147
 by DMX address, 148
Update key, 114
 Auto Update, 204
updating
 fixture types, 126
 software, 413
updating software, 413
USB DMX widget
 installation with Hog 3PC, 352
 upgrading, 363
USB Expander, 86
USB LTC widget
 installation with Hog 3PC, 352
USB Super widget
 installation with Hog 3PC, 352
USB Wings
 installation with Hog 3PC, 352
user interface, 5
User Manual
 reporting problems, 424
User Number
 modifying, 149
User Preferences, 61
 Console, 62, 63, 64, 65, 66, 67
 Edit, 161, 178, 228
 Playback Defaults, 167, 304

V
Value button, 113
version numbering, software, 425
video timecode (see timecode)
View by DP, 143
View Cue, 217
View Toolbar, 102
views (see desktop views)
Views Directory, 102, 108
virtual faders, 94
 on Hog 3PC, 361
virtual masters, 12, 278, 298
Vision
 visualiser software, 375
 visualiser software
 using with Hog 3PC, 362
 using with Wholehog consoles, 375

W
wait time, 227, 238
wheel
 I-Wheel, 12
 Rate Wheel, 12
white point, 15, 167
Wholehog 3
 clean software install, 413
 technical specification, 431
Wholehog consoles
 reporting problems, 423
 updating software, 413
Wholehog II, 11
Widget
 expanding DMX Processor 8000, 86
widgets
 configuring on Hog 3PC, 359
 installation with Hog 3PC, 352
 upgrading, 363
Window Control Toolbar, 100
windows
 bringing to the front, 100
 closing, 100
Cuelist, 245
directory, 108
Edit Fixtures, 152
Index

editor, 113
Fixture, 133, 149
Fixture Patch, 140
Fixture Schedule, 133
Fixture, View by DP view, 143
Launched Processes, 421
Levels View, 284
moving, 100
on Hog 3PC, 357, 358
opening, 99
Output, 283
Parked Output, 207
pinning, 100
resizing, 100
scrolling contents, 101
Show Manager, 121
spreadsheets, 104
wings
 adding expansion, 95
 adding playback, 93
 configuring expansion, 95
 installation with Hog 3PC, 352
 playback, 281
 programmer, 361
 removing playback, 94
 using expansion, 96
with state, 221
worklight, on Road Hog, 367
WYSIWYG
 visualiser software, 375

Z

Zip drive, 119, 121
 ejecting a disk, 123